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ABSTRACT
Developing embedded software is challenging due to the need
to strike a balance between writing loosely coupled and
maintainable code while coping with the microcontroller’s
limitations in memory, storage, and processing power.
While object-oriented programming can lead to improved
abstractions and cohesive, easier-to-maintain software,
traditional low-level implementation of polymorphism often
introduces runtime overhead that hinders its adoption. This
paper proposes a compiler-driven dependency injection (DI)
technique that enables the compiler to resolve dependencies
and replace bound interfaces with concrete implementations
in the AST tree to reduce the burden of virtual dispatch
in embedded software. We compared five implementations
of a breakout game written with object-oriented language
features, C++20 concepts, and our proposed method.
Results show that the language features allow clear interface
definitions and centralized binding configurations, enhancing
maintainability and portability. Furthermore, our compiler-
driven approach enables optimizations beyond interface
boundaries, improving code inlining, constant propagation,
interprocedural optimization, and dead code elimination,
producing 41.9% smaller and up to 73.3% faster firmware
than equivalent versions with compile-time injection.

KEYWORDS
Compiler-driven dependency injection; Embedded software;
Hardware Abstraction; Optimization

1 Introduction
Embedded systems pose unique challenges to software design
due to the inherent resource constraints of microcontrollers,
which include limited memory, storage, and processing
power, as well as application-specific constraints such as
security, energy consumption, weight, and cost limitations
[3]. Frequently, supporting multiple hardware architectures
is also a firmware requirement or becomes a necessity
when designing new product versions with upgraded
hardware. These constraints require efficient software,
typically tightly coupled with hardware using low-level
features of programming languages to configure and manage
the microcontroller units (MCUs) [22].

While these methods of coping with hardware heterogene-
ity and product requirements are functional and widely used,
they often lead to reduced software cohesion and tightly cou-
pled code to hardware architecture, obscuring its structure

and making it harder to maintain and debug. That is particu-
larly true when targeting multiple platforms, as the platform-
specific details increase, resulting in maintenance challenges,
higher complexity, and decreased portability [8, 15, 21].

In turn, principles from object-oriented programming
(OOP) such as encapsulation, inheritance, and polymor-
phism can improve software cohesion and reduce coupling
by promoting a clear separation between hardware-specific
code and application logic through standardized interfaces.
However, the standard low-level implementation of these
principles provokes additional code size and performance
overhead due to dynamic dispatch mechanisms, such as vir-
tual function tables (vtables) and supporting structures [2].
To address these inefficiencies, generic programming and
metaprogramming are options available in languages (such
as C++ and Rust), which provide flexible and type-safe ab-
stractions, enabling static polymorphism and not incurring
runtime overhead [10]. Nevertheless, their use increases the
complexity of code maintenance and sometimes introduces
challenges related to code size (code or template bloat) due
to the monomorphization technique employed during the
compilation [1] – a significant constraint in embedded soft-
ware development.

Dependency Injection (DI) [19], often overlooked in
embedded system software, is a technique commonly used
in object-oriented programming to separate the concern
of how dependencies are provided to a component from
the component’s core logic. The key advantages of DI
are enhanced modularity, testability, and flexibility, which
result in easier maintenance in general and can enable
portability for hardware or peripheral changes independently
of the core application logic in embedded software. However,
as DI frameworks are built on top of OOP, they share
the same disadvantages discussed for dynamic dispatch.
Additionally, the need for runtime resolution of dependencies
introduces performance overhead due to the use of Run-
Time Type Information (RTTI or reflection). Furthermore,
DI containers can complicate dependency tracking, making
it more challenging to debug the firmware due to reduced
predictability, especially when managing low-level hardware-
software interactions.

However, recent advances in DI frameworks sacrifice
flexibility for runtime performance by resolving dependencies
at compile time, thus eliminating the need for reflection
and reducing dynamic dispatch (e.g., the Dagger 2
framework [12] for Java and Boost-ext.di for C++ [11]).
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Despite that, they still are external libraries outside the
compiler’s core, leaving the compiler unaware of the concrete
types associated with abstract interfaces. Additionally,
these frameworks typically rely on complex template
metaprogramming constructs (see Section 5.1), which can
increase the cognitive burden for developers.

In this paper, we further expand compile-time dependency
injection, evaluating a novel compiler-driven approach for
embedded software. In addition to generating code that
instantiates and injects dependencies at compile time, we
also make the compiler frontend aware of the bindings and
capable of replacing bound interfaces entirely with their
concrete implementations in the abstract syntax tree (AST).
This deeper integration enables the compiler’s intermediate
code generation to optimize beyond opaque interface
boundaries, significantly increasing the number of static
calls and improving the efficiency of optimization passes
such as inlining [6], constant propagation, interprocedural
optimization (IPO), and dead code elimination (DCE) [5],
resulting in smaller binaries and faster execution. We argue
that this approach also simplifies hardware abstraction,
improves early error detection, and enhances maintainability
compared to object-oriented programming using vtables
and generic programming/metaprogramming using C++20
concepts.

The remainder of this paper is organized as follows. In
Section 2, we discuss runtime and compile-time dependency
injection as well as their limitations regarding embedded
software constraints. In Section 3, we introduce the
syntax of the language features that support our approach
through an easy-to-follow example. Section 4 describes
the compiler-driven DI and discusses our implementation
choices. Section 5 presents the evaluation, comparing five
versions of a breakout game concerning its software quality
attributes, runtime performance and firmware size. Finally,
we present our conclusion and propose future work in
Section 6.

2 Dependency injection
Suppose that in the source code of a firmware, we have
a class representing an MCU hardware with inner classes
abstracting each of its digital ports. Each of these subclasses
implements a digitalport interface that has methods to set
the port direction (input/output) and to get or set its value.
A digital port then becomes a component that other classes
for hardware peripherals can depend on. For example, a class
(or driver) for an Serial Peripheral Interface (SPI) display
can depend on ports for tasks such as selecting, resetting,
and sending data or commands to draw pixels in the
display panel. The specific ports used to interconnect these
two hardware components vary significantly across different
hardware designs or MCUs. The process of mapping, in
software, the hardware connections of the circuit board
becomes increasingly challenging as the firmware increases
support for products from distinct vendors (3D printer
firmware, for example [4]).

Dependency injection (DI) [19] is a design pattern built
on top of OOP that implements the principle of inversion
of control. Given a set of binding rules, a DI framework
implements an external entity responsible for providing the
dependencies required by a software component. In the
example above, a set of rules in the application configuration
determines what digital ports to bind to the SPI display
without hard-coding it in the display class. This way, the
display class becomes modular and can even be tested with
mocked ports when unit testing the software. Thus, by
decoupling component configuration from implementation
logic, DI promotes modularity, testability, and reuse [9, 19].

Most popular DI frameworks target general-purpose
environments with dynamic runtime support, such as Java’s
Spring [23] and Google’s Guice [16]. Embedded software,
however, demands a more static and predictable approach
due to limited resources, the lack or the burden of
RTTI, and tight performance constraints. Indeed, recent
advances in DI frameworks trade runtime flexibility for
performance by resolving dependencies statically at compile
time, eliminating the need for RTTI and reducing dynamic
dispatch (e.g., the Dagger 2 framework [12] for Java and
Boost-ext.di for C++ [11]), making them more suitable for
resource-constrained environments.

Another fundamental challenge with dependency injection
is that frameworks implement a model for binding known
as single binding per interface (SBI), which allows only one
concrete interface implementation bound per interface. That
becomes cumbersome when a component requires multiple
implementations of the same interface as dependencies, as in
the above example, where all ports needed by the SPI display
implement the digitalport interface. To conform to the
SBI model and properly bind dependencies to components
in such scenarios, the best practices recommend using role-
specific interfaces, type aliases, or named binding, each with
its disadvantages and trade-offs. The most naive solution,
role-specific interfaces, can cause code duplication, interface
bloat, and reduced reusability when designing a standard
library for hardware abstraction. In turn, type aliases (e.g.,
using spi_reset_port = digitalport in C++) introduce
new names for already existing types with no type distinction
or safety enforcement. Finally, named bindings, implemented
using language annotations, can lead to string-based errors
and ambiguity as the set of names increases and becomes
difficult to maintain.

At their core, these mechanisms try to overcome the
challenge of implementing dependency injection without
relying on RTTI or with the absence of specific language
constructs to bind concrete components directly to class
fields (or constructor parameters) that already have
meaningful names. Achieving this level of integration using
actual language features is challenging, if even possible.
However, it can become safer, simpler, and more efficient
if supported at the language level and integrated into the
compiler frontend.

Believing that language-level support for dependency
injection can address the challenges related to virtual
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dispatch (as discussed in the introduction) and the
aforementioned limitations of DI in embedded software,
we propose a compile-driven dependency injection feature
in a prototype language, Robotics Language [7], and
implemented the lowering in its compiler, robcmp.1

To reduce the effort required to implement and exper-
iment with such a design, we leverage the LLVM com-
piler infrastructure [13], focusing on frontend innovation
(compiler-driven DI) while benefiting from existing optimiza-
tion pipelines. LLVM provides a flexible and modular set of
compiler and toolchain components, including a rich inter-
mediate representation (IR).

3 A blinking LED example
This section introduces the language features and minimal
standard library support for compiler-driven dependency
injection through an easy-to-understand LED blinking
firmware. The following sections will expand this further
and present implementation details. The hardware for this
example application is composed of an MCU and an LED
connected to one of its digital ports. The purpose of the
software is to set up the MCU to blink the LED at 500 ms
intervals.

The code in Listing 1 defines the interface that abstracts
some standard routines of an MCU. It has three methods:
wait_ms for delaying execution, clock to retrieve the
MCU clock speed, and set_interruptions for enabling or
disabling interrupts. Typical MCU peripherals should be
abstracted as well, as presented in Listing 2. The code defines
interfaces for digital and analog ports, including methods for
getting or setting their value, as well as modifying the port
direction (input or output).

A concrete type (or class) can implement the mcu and
digitalport interfaces, as shown in Listing 3. The avr5mcu
type implements the mcu interface, defining the clock and
set_interruptions methods as well as the interface imple-
mentations for each of the MCU ports. We use a specific
syntax for inner classes that embeds interface implementa-
tion, increasing cohesion. The implementation, as hierarchi-
cal fields of the type, encapsulates the configuration of I/O
operations while maintaining a structural and semantic bond
to the parent MCU type, which will ease the specification
of binding rules for compiler-assisted dependency injection.
The listing shows the implementation of two ports as ex-
amples: b0 and b5 of an AVR MCU [14], both controlled
by ddrb and portb registers (another source file defines the
structure and addresses of these registers, generated from a
System View Description (SVD or ATDF) file provided by
the MCU manufacturer). Due to space constraints, we omit
the other digital MCU ports, though we implement them
similarly.

1The Robotics Language is developed as part of research projects at
Universidade Federal de Jataí and is used in the Compiler course of
the Computer Science Bachelor’s program.

Listing 1: An example MCU interface
1 interface mcu {
2 // delay ms miliseconds
3 void wait_ms(uint16 ms);
4 // enable or disable MCU interruptions
5 void set_interruptions(bool enabled);
6 // get the MCU clock speed
7 uint32 clock();
8 ...
9 }

Listing 2: Interfaces for digital and analog ports
1 enum portmode { input = 0, output = 1}
2
3 interface digitalport {
4 void mode(portmode m);
5 void set(bool v);
6 bool get();
7 }
8
9 interface analogport {

10 void mode(portmode m);
11 void set(uint16 v);
12 uint16 get();
13 }

Listing 3: AVR MCU partial implementation
1 type avr5mcu implements mcu {
2
3 uint32 clock() { return 16E6; }
4
5 void set_interruptions(bool enabled) {
6 if enabled { asm "sei"; }
7 else { asm "cli"; }
8 }
9

10 // subtype implementing the digitalport
interface for the MCU B0 port

11 b0 implements digitalport {
12 void mode(portmode m) { ddrb.b0 = m; }
13 void set(bool v) { portb.b0 = v; }
14 bool get() { return portb.b0; }
15 }
16 // implementation of the MCU B5 port
17 b5 implements digitalport {
18 void mode(portmode m) { ddrb.b5 = m; }
19 void set(bool v) { portb.b5 = v; }
20 bool get() { return portb.b5; }
21 }
22 //...
23 }

The code in Listing 4 presents the traditional LED
blink program for microcontrollers, written in a hardware-
agnostic way using the previously defined interfaces. The
variables mmcu and led (lines 2 and 4) are declared using
the interface types (mcu and digitalport, respectively). The
language’s type inference will determine their types from the
expressions on the right-hand side. What appears to be an
interface constructor call is a binding point that will receive
a concrete implementation through injection at compile time.
The main function initializes the LED port mode to output
mode (line 7) and enters a loop that toggles the LED state
every 500 milliseconds by calling the wait_ms method of the
MCU interface.
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Concrete implementations of mcu and digitalport are
bound to the global variables mmcu and led, respectively,
by a hardware specification source file. Listing 5 provides
an example that binds a single global instance of the
previously defined avr5mcu type to mmcu. This separation of
application logic from hardware details promotes portability
and maintainability across different embedded platforms.
Each supported MCU architecture can have its binding
file, which is used in the build process when targeting the
respective MCU. As changes to the hardware configuration
do not imply changes to the application core logic, this
modular approach encourages code reuse and improves
maintainability.

4 Compiler-driven dependency injection
In our prototype language, there are two binding points for
concrete types. First, an interface can be the type of variables
in the global scope (such as the mmcu and led variables
shown in Listing 4). The expression on the right-hand side
establishes the semantic type needed in the symbols table
for the variable, enabling the compiler to enforce a binding
rule that specifies a concrete type implementing the interface.
The compiler then generates code for instantiating and
binding the type into that variable at the program start
(Listing 5).

The second binding point is at the fields of a type,
as shown in Listing 6. The example game type uses a
display interface for the gdisplay field (line 2). In this
case, the gdisplay field will be implicitly initialized with
the appropriate concrete type instance, ssd1306, whenever
a game instance is created, as defined by the bind rule (line
6).

The syntax of the binding rule allows the binding of a
concrete type to one or more binding points as well as
binding inner classes of that type to multiple points (in
Listing 6, line 9 binds an instance of other to both x and
w; line 10 binds the f1 field of other to y and z). Also, any
missing rule for a defined binding point is reported early
by the compiler. Furthermore, when binding a concrete type
to these points, the compiler visits the Abstract Syntax Tree
(AST) and replaces the interface type with the concrete type.

These two binding points are part of our strategy to
simplify DI rules and replace dynamic by static dispatch
through interface substitution in the AST. What would be
a set of boilerplate setup code using constructors or setters,
which creates an opaque barrier to optimization and requires
the inference of complex dependency graphs, becomes a
compiler-managed process without any limitation of the SBI
model, dynamic dispatch or opaque barrier to optimization
while allows hardware resources globally accessible, and
modular peripheral abstractions.

To support interface-based polymorphism, we use a
switch-based dynamic dispatch [2]. Instead of generating
vtables, the compiler adds a unique ID field for each
type that implements an interface and uses it to dispatch
a method call to the correct method implementation.

Listing 4: A hardware-agnostic LED blink example.
1 // an mcu implementation will be bond here
2 mmcu = mcu();
3 // the firmware needs a digital port
4 led = digitalport();
5
6 int16 main() {
7 led.mode(portmode.output);
8 loop {
9 led.set(true); // turn on the LED

10 mmcu.wait_ms(500);
11 led.set(false); // turn off the LED
12 mmcu.wait_ms(500);
13 }
14 }

Listing 5: DI code for binding an AVR MCU in the
LED blink example.

1 bind avr5mcu to mmcu {
2 bind b5 to led;
3 }

Listing 6: Binding points in the prototype language.
1 type game {
2 gdisplay = display();
3 }
4
5 // sample code that will bind the concrete ssd1306

display to game.gdisplay (DI code)
6 bind ssd1306 to game.gdisplay;
7
8 // extended syntax of the bind statement
9 bind other to x, w {

10 f1 to y, z;
11 }

Listing 7: Interface switch-based template for
dynamic dispatch using the id field.

1 return_type interface_name.method_name(this) {
2 switch (this.id) {
3 case x: return x_type.method_name(this);
4 case y: return y_type.method_name(this);
5 case z: return z_type.method_name(this);
6 default: halt();
7 }
8 }

Specifically, the compiler generates a function for each
interface method in the format defined in Listing 7. The
ID of the instance (this.id) is read (line 2), and a case
statement is chosen based on the ID of each concrete type
implementation (x, y, or z in the listing, lines 3–5). A
default case (line 6) halts the MCU when the ID is not a
concrete implementation of the interface, preventing memory
corruption or control flow hijacks.

A disadvantage of the switch-based dynamic dispatch
method is that it requires a monolithic build, forcing
that all classes are known at compile-time2 to generate
the switch. This requirement prevents adding new types
or updating implementations after compilation (dynamic
2This requirement can be postponed to link time by enumerating types
in the linker, as done by Bauer and Rossow [2].
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linking), a feature needed in systems designed to dynamically
load new behavior (e.g., plugins or drivers). Despite
these scenarios, for MCUs and embedded software, the
firmware is often rebuilt and deployed as a complete image,
making a monolithic build acceptable. Although the method
seems inefficient at first, Bauer and Rossow [2] showed
it reduces binary size, can improve runtime performance,
and constitutes a complete protection to mitigate vtable
hijacking (such as the COOP attack [17]) – a type of attack
in traditional polymorphism implementations using vtables.

Additionally, to reduce code size and memory usage,
and consequently increase performance, we add passes in
the semantic analysis that remove the ID field and mark
the dispatch function as inline for types that are the
only concrete implementation of a specific interface (i.e.,
devirtualization). Also, we assign consecutive numbers to
the ID field of concrete types of an interface, observing
that densely packed numbers in switch statements can be
lowered by more efficient constructions than sparse sets –
jumptables (constant-time) vs compare and branch (linear-
time) [18, Chap. 6].

5 Evaluation
To evaluate the proposed compiler-driven dependency
injection and present a minimal accompanying standard
library, we developed a breakout game as a case study.

Breakout is a classic arcade game in which the player
controls a paddle to bounce a ball upward toward a wall
of bricks. The objective is to break all the bricks by hitting
them with the ball, which rebounds off the paddle, walls,
and bricks. If the ball falls past the paddle at the bottom
of the screen, the player loses the game. Figure 1 shows
two screenshots of the game: one at the beginning of a
level and another after some bricks have been broken. In
our implementation, the game starts with five full rows of
bricks. After breaking all the bricks of a level, the game
generates another level with a random pattern of missing
bricks and reduces the size of the paddle. The number of
missing bricks increases progressively, and the paddle size
reduces for a total of 30 levels.

The game’s source code was designed to be abstract
and decoupled from the hardware (underlying MCU, its
peripherals, and the display), enabling portability with
minimal modifications. The architecture defines interfaces

Figure 1: Breakout game screenshots: the start of a
level (left) and after some bricks have been broken
(right). The paddle is at the bottom center and the
smaller square represents the ball.

for core hardware components: the MCU (Listing 1), digital
ports (Listing 2), display, and databus. The display interface
is built over a canvas abstraction, which renders to an off-
screen buffer. Concrete implementations were developed for
the ATmega328P MCU [14] (Listing 3) and for an SSD1306
SPI-based display [20]. There are concrete implementations
of the databus interface for both SPI and UART serial
communication protocols. At the core of the application,
a game class encapsulates the logic and interprets input
signals (via UART) to control the paddle’s movement. The
architecture of interfaces and types allows easy modification
of the SPI display with a corresponding one using I2C
protocol, rewiring digital ports, or even replacing the MCU:
the same logic runs across different hardware configurations
with no changes in the core logic.

We implemented five versions of the game: rob, using
the prototype language with compiler-driven DI; vtable,
using C++ OOP, with interfaces implemented as structs
with virtual methods, generic programming in strategically
chosen places (templates for repeated code), and hard-coded
dependencies; vtabledi, same as vtable but using a compile-
time DI framework [11] instead of hard-coded dependencies;
concept, using C++20 concepts instead of virtual dispatch,
with hard-coded dependencies; and conceptdi, same as
concept but using compile-time DI.

We choose the Boost-ext.di framework [11] for implement-
ing compile-time DI in the C++ versions. The framework
itself is implemented in a unique header file, without depen-
dencies, can be built without exceptions, and supports the
binding of C++ concepts.

The complete source code for each game version is
available at https://github.com/thborges/sblp2025.

5.1 Software quality attributes
In the following, we discuss some challenges related
to software quality attributes, such as cohesion and
maintainability for each game version.

Listing 8 shows the digitalport interface implementation
for each C++ breakout game version. For comparison, the
implementation for the rob version is in Listing 2. C++
does not have interfaces, but they can be implemented as
structs (or classes) with virtual methods (lines 2–6). The =0
indicates a pure virtual function without implementation,
making the struct abstract (uninstantiable). Derived classes
override these functions and enforce the compiler to use
vtables. In contrast, lines 9–14 present the C++20 concept
implementation. Distinctly, the concept is only a compile-
time constraint that specifies the requirements a type must
satisfy to serve as a template parameter. For example,
the dependent concrete type avr5spi, in lines 17–21, is a
template class that requires its dependency (reset_port) to
satisfy the digitalport concept. Any overhead in size or
performance comes from the template usage in the concrete
type and not from the concept itself. Note that the avr5spi
definition does not declare that it implements a databus
concept; however, it is necessary as a template parameter

https://github.com/thborges/sblp2025
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in the dependent class. Despite the verbosity of the C++
language, which impacts readability and maintainability, in
the virtual struct with the dispensable virtual and =0, and
more pronounced in the concept version,3 the constructs
are equivalent in functionality. In the prototype language,
the use of the interface keyword (Listing 2) indicates the
nature of the construct, dispensing additional symbols.

Listing 9 shows the setup of the binding rules for vtabledi
and conceptdi. The injector for vtabledi version, lines 2–11,
presents the aforementioned use of named bindings (nm_uart,
nm_display, dp_ss, and avr5_ss). These names have to be
shared between all classes that use them (the main app and
the ssd1306 display classes), which reveals as a potential
source of name collisions when using libraries provided by
distinct vendors or ambiguity if distinctiveness of names is
enforced, as exemplified in lines 8 and 9, two names for
the same concrete class avr5mcu_b2. These aspects reduce
modularity and extensibility.

The concept-based injector for the conceptdi version, lines
14–26 of Listing 9, presents a template-heavy configuration
that nests templates for the display type (line 15) and
the SPI databus (line 14), with additional parameters for
three digital ports and a framebuffer. Although the using
keyword (C++11) allows a split definition, maintaining such
code is challenging and heavily depends on understanding
the underlying templates (e.g., the order of template
parameters). Another problem is the ambiguity caused by
the repeated use of the avr5mcu_b2 port both in the type
definition (lines 14 and 15) and the bindings (lines 23
and 24). A misconfiguration of any of these lines will pass
undetected and cause runtime malfunctioning. Furthermore,
the compiler error messages often will not aid in diagnosing
issues effectively. Thus, we consider it low in maintainability
and readability.

Finally, lines 29–35 in Listing 9 show the injector
for the rob version. The use of inner classes allows a
concise and centralized expression of binding rules, mapping
the relationships between high-level components (e.g., the
display to data buses) and low-level MCU resources (e.g.,
digital ports, UART0, and SPI), which improves readability
and enhances modularity. Moreover, inner classes prevent
unnecessary exposure of hardware details: for instance, ports
b3, b4, and b5, which are fixed for the SPI peripheral
in the AVR5 platform, are kept internal and hidden
from the top-level configuration. That is impossible in the
other DI versions. Thus, we believe that this approach
reduces cognitive overhead and the risk of misconfiguration,
improving the maintainability and portability of the overall
design.

5.2 Performance and size evaluation
We evaluated the impact of each game version on the
firmware size, instruction count, and runtime performance.
The C++ source code was built with clang++ version

3The concept is a powerful construct of C++20 that can be used in
many other compile-time checks other than the one shown here.

Listing 8: C++ interface implementation using
abstract struct and concepts.

1 // virtual digitalport for vtable versions
2 struct digitalport {
3 virtual void mode(port_mode m) = 0;
4 virtual void set(bool v) = 0;
5 virtual bool get() = 0;
6 };
7
8 // concept based digitalport
9 template <typename T>

10 concept digitalport = requires(T obj) {
11 { obj.mode(port_mode{}) } -> same_as <void>;
12 { obj.set(bool{}) } -> same_as <void>;
13 { obj.get() } -> same_as <bool>;
14 };
15
16 // use of the concept in a concrete type
17 template <digitalport dp>
18 class avr5spi {
19 dp& reset_port;
20 ...
21 };
22

Listing 9: Injectors for each DI-enabled version of
breakout game.

1 // injector for the vtabledi version
2 auto breakout_injector = make_injector(
3 bind<mcu>.to<avr5mcu >(),
4 bind<buffer8 >.to<ssd1306_framebuffer >(),
5 bind<display >.to<ssd1306 >(),
6 bind<databus >.named(nm_uart).to<avr5_uart0 >(),
7 bind<databus >.named(nm_display).to<avr5_spi >(),
8 bind<digitalport >.named(dp_ss).to<avr5mcu_b2 >(),
9 bind<digitalport >.named(avr5_ss).to<avr5mcu_b2

>()
10 ... // 5 more bindings for b0, b1, b3 -- b5
11 };
12
13 // injector for the conceptdi version
14 using spi_t = avr5_spi <avr5mcu_b3 , avr5mcu_b4 ,

avr5mcu_b5 , avr5mcu_b2 >;
15 using display_t = ssd1306 <spi_t, avr5mcu_b1 ,

avr5mcu_b0 , avr5mcu_b2 , avr5mcu ,
ssd1306_framebuffer >;

16
17 auto breakout_injector = make_injector(
18 bind<c_mcu >.to<avr5mcu >(),
19 bind<c_databus_uart0 >.to<avr5_uart0 >(),
20 bind<c_buffer8 >.to<ssd1306_framebuffer >(),
21 bind<c_databus_display >.to<spi_t >(),
22 bind<c_display >.to<display_t >(),
23 bind<c_digitalport_b2 >.to<avr5mcu_b2 >(),
24 bind<c_avr5_ss >.to<avr5mcu_b2 >()
25 ... // 5 more bindings for b0, b1, b3 -- b5
26 };
27
28 // injector for the rob version
29 bind avr5mcu to mcu {
30 bind b0 to ssd1306.reset;
31 bind b1 to ssd1306.datacmd;
32 bind b2 to ssd1306.select;
33 bind uart0 to dbus_uart;
34 bind spi to dbus_display , ssd1306.dbus;
35 };
36
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Table 1: Size (in bytes) and performance measured
as fps of each breakout game implementation.

version size Δ% fps Δ%
vtabledi 10108 – 2925 +4.4
vtable 8702 -13.9 2801 –
conceptdi 9366 -7.3 3948 +41.0
concept 6144 -39.2 3972 +41.8
rob 5874 -41.9 4855 +73.3

19.1.2 using -Oz, -fno-exceptions, -ffunction-sections,
-fno-rtti, -fdata-sections, and -lto=thin. The compiler
of the prototype language used the same LLVM 19.1.2
backend and build options.

The resulting firmware sizes are shown in Table 1. The
firmware built for rob is 4234 bytes (41.9%) smaller than
vtabledi, and 3492 bytes (37.3%) smaller than conceptdi.
These are the three versions with DI support. The use of
the DI framework added 3222 bytes in the concept version
and 1406 bytes in vtable, a significant amount of memory for
an MCU. Rob size is also smaller compared to vtable (32.5%)
and concept (4.4%). Note the effectiveness of the concepts
feature regarding the binary size. The main cause for the
larger size of vtable is the use of vtables itself, which increases
call overhead, producing significant stack manipulation and
reducing the efficiency of some compiler optimization passes
(inlining, constant propagation, DCE, IPO). Both concept
and rob firmware do not produce vtable structures, and their
size difference stems from the concept’s reliance on generic
programming and minor variations in compiler inlining and
optimizations.

To measure performance, we deactivated the game-over
condition and allowed the game to continue when the ball
hit the bottom edge as if the paddle was there. We also let
the game run at full speed, without time constraints imposed
at normal execution. In this approach, we run all levels and
measure the time to complete the game (t), count frame
updates (u), and compute frames per second (fps) as fps=u/t.
We captured the start and the end of the game execution
through the uart0 port.

The results are shown in Table 1, under the fps column.
The rob implementation was 73.3% faster than vtable;
vtabledi runs 4.4% more frames per second than vtable,
followed by conceptdi (41%) and concept (41.8%). The reason
for the difference in performance is the reduction in the
total number of instructions (simplification of critical paths)
and the use of simpler, faster instructions. The rob version
reduced costly operations such as indirect calls (icall, 3
clock cycles) and performed significantly fewer memory and
stack operations, such as movw, ldd, ld, push, and pop.
The vtable version, by contrast, introduces extra overhead
through indirect calls and increased memory manipulation,
while the concept version, though avoiding icall, still
exhibits more stack manipulation than rob. In summary,
the compiler-driven dependency injection exposed better

inlining and optimization opportunities that remain hidden
in the C++ code.

We further investigated the reason behind this result by
disassembling the firmware ELF binaries with the utility
command avr-objdump -D and a custom Python script to
count how many times each instruction mnemonic appeared
in the disassembled code. The results are shown in Table 2.
Rob firmware has 1298 fewer instructions than vtable,
representing a 32% decrease in instruction count. Compared
to concept, rob also presented 116 fewer instructions (4%).
The most reduced instructions compared to vtable are
memory-related operations (movw: −421, ldd: −286, ld:
−129) and call stack manipulations (push: −87, pop: −87),
reflecting the elimination of vtable lookups and reduced call
overhead. These are also the most reduced instructions when
compared with concept. Notably, icall instructions were
eliminated (vtable: 63, concept and rob: 0), demonstrating

Table 2: Instruction count comparison for the
breakout game firmware. The reduction in rob
compared to vtables and concepts are due to
significant decreases in memory and stack related
operations as well as the elimination of indirect calls.
The hidden rows have −20 ≤ ∆ ≤ 9.

C++
Instr. rob vtables Δ concepts Δ
movw 173 594 -421 309 -136
ldd 73 359 -286 114 -41
ld 8 137 -129 35 -27
pop 87 174 -87 132 -45
push 87 174 -87 132 -45
icall 0 63 -63 0 0
lds 13 68 -55 46 -33
ret 65 118 -53 72 -7
mov 141 190 -49 161 -20
add 86 126 -40 109 -23
sbci 71 107 -36 87 -16
adc 109 140 -31 123 -14
subi 60 89 -29 69 -9
eor 102 126 -24 115 -13
or 11 33 -22 23 -12
sbc 25 46 -21 45 -20

...
in 66 57 9 28 38
out 77 66 11 39 38
dec 29 14 15 14 15
ldi 213 195 18 146 67
cpi 76 55 21 48 28
sts 25 2 23 2 23
adiw 50 22 28 18 32
std 236 129 107 102 134

2762 4060 -1298 2878 -116
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the effectiveness in eliminating runtime indirection by the
use of concepts and compiler-driven dependency injection.

The increase of std (+134) and ldi (+67) in rob occurs
during the initialization of variables and bindings, a one-
time operation, whereas the reductions in ldd (−286) and
push (−87) benefit the game’s main loop. This trade-off is
advantageous, as the continuous frame rendering amortizes
the initialization overhead.

6 Conclusion and future work
In this paper, we addressed the challenges of developing
maintainable and optimized software for resource-constrained
embedded systems. Traditional OOP approaches often in-
troduce unwanted runtime overheads due to their low-level
implementation of polymorphism (vtables with dynamic dis-
patch). While alternative language features, such as generic
programming (templates) and C++20 concepts, do elimi-
nate dynamic dispatch in favor of static dispatch, they also
introduce challenges regarding readability and maintainabil-
ity due to their verbosity and complex metaprogramming
constructs.

To overcome these limitations, we proposed a novel
compiler-driven dependency injection approach deeply
integrated into a prototype language. The design shifts
the responsibility of dependency resolution from runtime
(or library-based metaprogramming at compile-time) to the
language frontend and compiler intermediate representation.
The strategic binding points and a concise bind syntax
allowed the compiler to perform static dependency injection
by replacing interface types with concrete implementations
in the Abstract Syntax Tree (AST).

Our comprehensive case study, a breakout game im-
plemented in five distinct versions (including C++ OOP,
C++20 Concepts, and boost-ext.di frameworks), provides
empirical evidence of the language syntax adherence to the
targeted application domain. The rob implementation consis-
tently shows smaller firmware sizes (e.g., 41.9% smaller than
vtabledi) and higher runtime performance (e.g., 73.3% faster
than vtable). A disassembly analysis revealed the underly-
ing reasons: compiler-driven DI eliminated costly runtime
indirections, such as vtable lookups and icall instructions,
and exposed opportunities for optimization passes, reducing
memory and stack operations.

Beyond the quantitative gains, language features such as
inner classes and the bind statement improve maintainability,
enhance early error detection for missing or incorrect
dependencies, and reduce cognitive overhead by providing
a coherent, language-native mechanism for managing
component relationships.

Looking forward, our work opens some avenues for future
research. We plan to explore the expansion of the language
features to support more complex dependency patterns and
how to incorporate other binding scopes, such as transient,
feature-specific, or thread-local dependencies. Furthermore,
we aim to evaluate our compiler-driven paradigm on a

broader range of embedded software to further validate its
benefits across diverse hardware platforms.
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