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Abstract
Multiway spatial joins are a commonly occurring and fundamental type of query for
spatial data processing. This article presents models and algorithms to schedule this
type of query in distributed database systems while attempting to strike a balance
between makespan and communication costs. We propose three algorithms based
on combinatorial optimization methods: the well-known linear relaxation technique
of rounding a solution generated by linear programming (LP), a more sophisticated
Lagrangian Relaxation method (LR), as well as a greedy heuristic (GR) for baseline
comparison. Our evaluation shows that a schedule built using GR consumes, on
average, 22% more processing and communication resources than a more elaborate
schedule constructed via the LR method, when scheduling a query for 64 machines.
The schedule provided by LR is also, on average, an order of magnitude closer to the
optimal schedule for a query compared to GR. We show that scheduling Gigabyte-
size multiway queries before execution can reduce its processing time by an order of
magnitude compared to state-of-the-art frameworks for spatial data processing that
do not have this capability, and can significantly reduce the amount of shuffled data
in the network.
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1. Introduction

The amount of spatial data available in many areas of human endeavor has significantly
increased with the popularization of GPS-enabled devices. This includes geotagged
satellite images and maps, sensor data from IoT (Internet of Things) devices, open data,
and census data. Typically, such data are continuously collected and organized in thematic
datasets to, for instance, support decision-making and improve the efficiency of market
intelligence and logistics. An important kind of spatial query used to process such
significant amounts of spatial data is the multiway spatial join (Mamoulis and Papadias
2001a). Multiway spatial join queries (MSJQ) are essential in several application fields,
including geography (e.g., finding the animal species that survived in a preservation
area damaged by fire or finding all the forests crossed by a river in each state (Du
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et al. 2017)), VLSI (e.g., identifying circuits that constitute a particular topological
configuration (Mamoulis and Papadias 2001a)), anddigitalmedical imaging (e.g., analyzing
microscopy whole slide images (WSI) of the brain in order to identify tumor subtypes
and characteristics, with a typical image containing 1010 pixels, hundreds of millions of
features, and thousands of images being generated daily in a moderate-size healthcare
operation (Aji et al. 2012)).

The complexity of the computational geometry algorithms used in MSJQ often
causes long query execution times (i.e., makespan). For practical spatial datasets, this
usually necessitates the processing of the related queries in distributed systems and the
partitioning of the datasets using spatial columns to split the processing cost amongmany
machines, consequently reducing query response time (Vu et al. 2020). However, there
are open issues related to the processing of multiway spatial join queries in distributed
environments (Huang et al. 2011). One such important issue, which is addressed in this
paper, refers to the efficient scheduling of query fragments in order to improve the overall
processing and communication costs. The partitioning of spatial datasets often creates
significant challenges due to their skewed nature, which may cause unbalanced query
execution. Further, besides considering the local CPU and I/O costs in a distributed system,
the selection of execution plans must take into account the effect of data partitioning
on the communication between the processors. Thus, the challenge when choosing a
schedule for a query is to find an appropriate division of all work among processors, with
regard to both the bandwidth limit of the network interface and the load on the CPUs.

Selecting execution plans and identifying query schedules to efficiently process MSJQ
in distributed systems are critical steps towards moving spatial data analysis to scalable
platforms, as has already been done with relational and unstructured data. However,
new methods and algorithms to improve the scheduling of the execution plans must
be specified, taking into account the specifics of spatial data and the characteristics of
distributed systems. Spatial data analysis in such situations can significantly improve the
scalability of spatial data processing, especially in today’s environment of cloud computing
platforms, taking advantage of elasticity, and pay-as-you-go offers.

The issue addressedhere relates to the copy selection and sub-query allocationproblem
described in the distributed database literature, dealing with the allocation and copying
of entire relations or fragments of horizontally partitioned relations (Özsu and Valduriez
2011). Early work suggested the use of exhaustive enumeration or heuristics to cope with
the NP-hard complexity of the problem (Yu and Chang 1984). In general, the proposed
solutions assume a controlled number of disjoint relation fragments and a small number
of replicas.

In this paper, we consider a generalization of this problem in which even a single step
of a multiway query may have a relatively large number of data partitions to handle,
given the size of spatial datasets involved. Furthermore, the fragments (or data partitions)
are non-disjoint by nature, due to the intrinsic characteristics of spatial data, and the
processingof eachquerypredicatemaybe split intoanumberofprocessors in adistributed
system. This generalized version of the problem adheres to recently proposed models for
data processing in distributed platforms such as MapReduce (Dean and Ghemawat 2008)
and Spark (Zaharia et al. 2016). However, the need for methods that consider both the
optimization of queries andmore flexibleways to partition data in such platforms has been
previously identified as a future research direction in the literature (Doulkeridis andNørvåg
2014).

In this direction, we propose a formal bi-objective linear model of the problem of
scheduling distributed multiway spatial join query plans. The model aims to minimize the
weighted sum of a query’s makespan and the total communication cost. We present three
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methods, based on combinatorial optimization, to identify viable solutions for themodel: a
greedy heuristic algorithm (GR), similar to those commonly used in relatedwork; the linear
relaxation technique of rounding a solution generated by linear programming, known as
Linear Relaxation (LP) (Vazirani 2001); and the more sophisticated Lagrangian Relaxation
(LR) method (Fisher 2004).

We also measured the benefits of query scheduling using an experimental distributed
query engine. We ran some Gigabyte-size queries frequently reported in the literature and
compared the execution timewith that reported for related software using state-of-the-art
frameworks such as MapReduce (Dean and Ghemawat 2008) and its in-memory andmore
general counterpart, the Spark engine (Zaharia et al. 2016).We show that scheduling query
plans prior to query execution can significantly reduce the execution time of queries in a
distributed environment.

Throughout the text, we assume a basic understanding of linear programming (LP) and
some elementary properties of linear models. We attempt to achieve a balance between
formalism and application, and present a brief introduction to Lagrangian Relaxation in
Section 2.4. For a more comprehensive coverage of linear optimization, the reader is
referred to Bazaraa et al. (2009) and Vazirani (2001, Chapter 12).

The remainder of this article is organized as follows. In Section 2,wepresent background
concepts on multiway spatial join, its processing in distributed systems, previously
reported work on spatial query processing built on top of the MapReduce and Spark
frameworks, as well as some of the concepts of linear optimization used in our algorithms.
We propose new models and solution algorithms for scheduling multiway spatial join
queries in Section 3 and present their evaluation in Section 4. Finally, we state our
conclusions and ideas for future work in Section 5.

2. Background and related work

2.1. Multiway spatial join

A simple or pairwise spatial join query performs a combination of objects from two spatial
datasets in pairs that satisfy some spatial predicate, θ, such as intersection or coverage. The
result of a spatial join of datasetsA and B, denoted asA ▷◁ B, consists of all pairs of objects
{a, b}, a ∈ A and b ∈ B, which fulfill a θ b (Brinkhoff et al. 1996).

A multiway spatial join query, in turn, is a set of interconnected spatial join queries with
an arbitrary number n of input datasets, n > 2 (Papadias and Arkoumanis 2002b). It can
be represented as a graph G = (D, P) with node set D and edge set P, where each node
represents a distinct dataset, and each edge represents a join predicate. Formally, given a
set of datasetsD = {D1, ...,Dn}, each containinga set of records ri1, ..., rimi , 1 ⩽ i ⩽ nandmi
being the cardinality ofDi, and a set of spatial predicates, P = {θij | ∀i, j, 1 ⩽ i, j ⩽ n}, the
query retrieves all n−tuples (r1p, ..., rik, ..., r

j
l, ..., unr ) such that each predicate θij holds when

applied to its respective elements in the n−tuple, with p, k, l, and r referring to specific
records of its respective datasets, 1 ⩽ k ⩽ mi, 1 ⩽ l ⩽ mj, and analogously for p and
r (Papadias et al. 1999, 2001, Mamoulis and Papadias 2001a, Papadias and Arkoumanis
2002a).

There are many distinct ways to process a multiway spatial join query, called execution
plans. Each execution plan defines a distinct order of processing the datasets and which
algorithms to apply in each step to compute the final result of the query. Mamoulis and
Papadias (2001a) showed that the number of ways to process a query on serial processors
(i.e., non-parallel, non-distributed) is a function of the query type, the number of input
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datasets, and the number of different join algorithms at each query step. They concluded
that the number of equivalent execution plans for a query is exponential in the number
of datasets. Although they are all equivalent and preserve the same query semantics, each
of them requires a different amount of computing resources to produce the final result.
An inexpensive execution plan for a query is, in general, orders of magnitude better than
an expensive plan, regarding its processing cost. Thus, a great amount of effort has been
dedicated to proposing cost-based optimizers that can select a relatively cheap execution
plan for a query based on its estimated computational costs (Mishra and Eich 1992).

Some authors have proposed functions that predict the cost of spatial join queries, such
as those by Fornari et al. (2006), Roh et al. (2010), and Sivasubramaniam (2001), as well as
methods to combine them to predict the cost of multiway spatial join queries (Mamoulis
andPapadias 2001a). Suchmethodsand functions, i.e., a costmodel, predict the I/OandCPU
resources needed by the join algorithms applied to an execution plan, assuming that the
data fills the spatial extent uniformly. However, the uniformity assumption does not hold
for practical spatial datasets andmay cause the selection of bad execution plans, especially
in the presence of dataset skewness. To improve plan cost estimation in this condition,
Mamoulis and Papadias (2001b) proposed a uniform (grid) histogram that divides the
spatial extent of the dataset into disjoint cells of fixed size that accounts the density of
spatial objects and other metadata about them, such as its average length. Additionally,
many histogram techniques were proposed to improve the selectivity estimation – the
main component of plan cost estimation (e.g., Acharya et al. (1999), Sun et al. (2006), and
Cheng et al. (2013)).

Careful use of the cost model can improve estimates by gathering additional metadata
for complex spatial objects, such as the kind of object stored, the area of polygons and
length of polylines, and the number of spatial data points to estimate the communication
volume in distributed systems. Furthermore, specific estimation formulas and precise
histogram techniques are often decidedly helpful for improve selectivity estimation when
joining polygons and polylines, as reported by de Oliveira et al. (2017) and improved
in de Oliveira (2017).

2.2. Distributed execution ofmultiway spatial join

With the increasing availability of large spatial datasets, many algorithms have been
proposed to execute spatial join and multiway spatial join queries in parallel and
distributed environments (e.g., Eldawy et al. (2021), Yu et al. (2018), Sabek and Mokbel
(2017), Duetal. (2017), Gupta andChawda (2014), Luoetal. (2002), Patel andDeWitt (2000)).
Most of these algorithms use a disjoint data partitioning strategy (declustering) to create
groups of spatial objects, called data partitions. A frequently proposed way of generating
data partitions is to group objects by location, i.e., their intrinsic geographic location. Prior
to or during the join execution, a routine assigns a set of partitions (query fragments) to a
particular processor that performs the query over it. Thus, the number of data partitions
is a key parameter of a distributed query processing system as it determines the level
of parallelism. However, in general, this number is determined empirically, for the data
being processed. Eldawy et al. (2015) presented and evaluated a comprehensive set of data
partitioning schemes for spatial data.

In our work, the cost model mentioned in the previous section was used to compute a
spatial grid histogram for each dataset, with a specific granularity based on its metadata.
Thehistogram, in turn, establishes thenumber of data partitions for thedistributed system.
In this way, we can maintain metadata about each partition, determine the tasks for each
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query in advance, and optimize a query before its execution. Furthermore, the strategy
does not require the repartitioning of data in each join query performed, in contrast to
some of the related work investigated. Further, the histogram acts as a distributed index
structure, which stores the metadata about the datasets – used to estimate the cost of
processing a query – and also supports the creation and assignment of data partitions in
the distributed environment. Due to space limitations, we refer the reader to de Oliveira
(2017) for further details.

Another issue regarding the distributed processing of MSJQ is how to schedule the
query fragments, or jobs, to processors in a way that achieves both a load-balanced query
execution and low network usage. The main difficulty in this regard is that a data partition
must be aligned with others, i.e., data partitions of distinct datasets but from the same
spatial region must be processed together on the same processor. The model we propose
in this paper addresses this issue and is described in Section 3.

We focus here on a hybrid optimization technique that splits the execution plan into
two parts: i) a static plan to determine the access methods to use and the order of dataset
processing, and ii) an execution plan, generated at run time, to determine where the jobs
will be executed and, consequently, where the data partitions will be copied from. This
way, we can focus on query scheduling (ii) and use previously reported results for well-
studied problems in (i), such as a plan enumeration explicitly designed formultiway spatial
joins (Mamoulis and Papadias 2001a).

2.3. Earlier work on the processing of spatial data in distributed systems

Recently, increasing attention has been focused on the processing of spatial data in
distributed systems and anumber of studies on this topic havebeenpublished (see Eldawy
andMokbel (2016) for a survey). In this sectionwebrieflydescribepreviously reportedwork
on the topic that relates to the issues addressed in this article.

Earlier studies based on MapReduce focused on how to make design decisions
concerning the underlying framework, such as the need to process the data in two phases
(the map and reduce functions) and the need to create homogeneous tasks with regard
to the load they cause in the reduction phase. Examples of such studies can be found
in SJMR (Zhang et al. 2009), VegaGiStore (Zhong et al. 2012), and SpatialHadoop (Eldawy
andMokbel 2015). These studies, however, only support the processing of pairwise spatial
join queries, not providing strategies to process multiway queries. The work presented
by Aji et al. (2012), and later improved on by the same authors (Aji et al. 2013), although
addressingmultiway spatial join, used the default MapReduce load balancer1, and focused
on dividing the load into evenly-sized tasks. This is also the case for the work of Gupta
et al. (2013), improved in Gupta and Chawda (2014). The default load balancer algorithm of
MapReduce assigns tasks to available slots in the cluster in a greedyway and requires tasks
to have evenly spread loads in order to perform a balanced execution (Kwon et al. 2012).
As discussed earlier, spatial data is, by nature, non-uniform and thus, the occurrence of
straggler tasks is expected, resulting in unbalanced execution. Although other algorithms
that improve the execution of non-uniform tasks in MapReduce frameworks are available
(e.g., Bhattu et al. (2020), Afrati and Ullman (2011), Moseley et al. (2011), Verma et al. (2012)),
all reported studies maintain a focus on providing equally-sized-tasks.

Thework on Spark for spatial data processingmainly supports the execution of pairwise
spatial joins (e.g., Eldawy et al. (2021), Yu et al. (2018), You et al. (2015), Yu et al. (2015),

1The term scheduling in the MapReduce literature is reserved for the distribution of cluster resources to multi-user loads,
similar to multi-query database loads.
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Xie et al. (2016)). However, it is possible to process a multiway join query in a system
designed to process pairwise join queries by cascading the result of a previous step to
the next. Nevertheless, it often incurs additional costs in collecting and redistributing the
intermediate results. As far asweknow,Duetal. (2017)proposed theonlywork that extends
Spark to process multiway spatial join queries and does not incur such costs. Similarly to
MapReduce, Spark also requires evenly-sized tasks to perform a balanced execution. Even
so, the SparkAPI allows an application to set the preferred locations for a task, a feature that
enables the scheduling of data to process on specific machines. However, all these studies
focus on providing evenly-sized tasks and do not mention the API for preferred locations.

There is also a significant body of research on distributed database technology with
some DDBMS supporting features for spatial data handling. However, the traditional focus
of DDBMS systems is on supporting multi-query workloads at the inter-operator and
inter-query levels of parallelism (Özsu and Valduriez 2011). Since our scope focuses on
intra-operator parallelism and does not include multi-query workloads, we limited our
comparison in this regard. An exception, however, is Distributed Secondo (Nidzwetzki
and Güting 2017), a distributed, general-purpose DBMS which considers both the intra-
operator level of parallelism and query optimization. The authors propose a decentralized
algorithm to assign tasks to query processing nodes inwhich eachmachine creates its own
jobs based on local data. A load balancing algorithm is used at the end of query execution
inwhichunderutilizedmachines areused to reduce the loadofbusymachinesby randomly
reassigning tasks. This strategy is similar to that used inMapReduce and Spark, and follows
the principle of performing computation in the same location where the data is originally
stored (i.e., reducing the need tomove data across the network). Although this scheduling
strategy focuses on reducing communication, Moseley et al. (2011) and Verma et al. (2012)
showed that, due to the combinatorial nature of the problem, constructing optimized job
schedules can greatly reduce themakespan. In contrast, we consider in this article both the
minimization of makespan and communication costs.

In general, the proposed techniques for the processing of MSJQ using the MapReduce
and Spark frameworks (e.g., Eldawy et al. (2021), Yu et al. (2018), Du et al. (2017), Eldawy
et al. (2017), Sabek and Mokbel (2017), Aji et al. (2013)) do not consider the selection
or even the scheduling of execution plans, which are well-established strategies to
process multiway queries in traditional database systems. In turn, the kind of parallelism
implemented by these frameworks, known as intra-operator parallelism, is a fundamental
design principle responsible for the high scalability achieved and, generally, is not
implemented in traditional distributed database systems as they focus mainly on intra-
query parallelism (Özsu and Valduriez 2011). Recently, the lack of attention to database
theory in the above-mentioned emerging frameworks has been criticized (e.g., Pavlo et al.
(2009), Stonebraker et al. (2010)) and a few surveys propose the integration of query
optimizers as future work (e.g., Doulkeridis and Nørvåg (2014)).

2.4. Lagrangian relaxation

In terms of computational complexity, the problem considered in this article is NP-Hard,
which means that nontrivial, general, numerical instances of it are notoriously hard to
solve. A common approach to deal with such problems is to solve a simplified version of
it to obtain approximate solutions and bounds. The well-known technique of Lagrangian
relaxation (LR) is suitable for such problems if their constraints can be divided into two sets:

• ‘simple’ constraints – when the problem consists of only these, it can be solved
relatively easily, and
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• ‘difficult’ constraints – when these are added, the problem becomes very hard to
solve.

More detailed descriptions of LR have been given by several authors, including Bertsi-
mas and Tsitsiklis (1997), Fisher (1985, 2004) and Klau and Reinert (2007). The main idea of
LR is to relax the problemby removing the difficult constraints and placing them in the ob-
jective function,where they are assignedweights (the Lagrangianmultipliers). Eachweight
represents a penalty that is added to the cost of any solution that does not satisfy the cor-
responding constraint. LR is often used for efficiently finding a bound on the value of the
optimal solution, Z, to such problems. Sometimes, the bound equals Z and the use of LR
leads to an optimal solution. Consider the following combinatorial optimization problem
expressed as an integer linear program:

Minimize Z = cTxcTxcTx, (2.1)
subject to

AxAxAx = bbb, (2.2)
DxDxDx ⩽ eee, (2.3)
xxx ∈ Zn

+Z
n
+Zn
+. (2.4)

where xxx,AAA, bbb, ccc,DDD and eee are integral, with dimensions n× 1,m× n,m× 1, n× 1, k× n, and
k× 1, respectively.

Assuming that the constraints givenby (2.2) are difficult, theoriginal problem (2.1) – (2.4)
becomes intractable. When (2.2) is removed, the remaining problem, including the easy
constraints (2.3), is assumed tobe relatively easy to solve compared to theoriginal problem.
To attempt to solve (2.1) – (2.4) by LR, a vector of non-negative variables μμμ = (μ1, ..., μm),
termed Lagrangian multipliers, is introduced into the objective function (2.1). This creates
the following relaxed problem in which the difficult constraints (2.2) have been relocated
and weighted with a set of fixed values from μμμ:

Minimize ZD(μμμ) = cTxcTxcTx+ μTμTμT(bbb−AxAxAx), (2.5)
subject to

DxDxDx ⩽ eee, (2.6)
xxx ∈ Zn

+Z
n
+Zn
+. (2.7)

Since (2.6) is a set of easy constraints, it is assumed that there exists an algorithm that
can be used to efficiently solve the relaxed problem (2.5) – (2.7) in polynomial or pseudo-
polynomial time. For any set of given non-negative values μμμ, it is straightforward to show
that ZD(μμμ) ⩽ Z, i.e., the value of the solution to (2.5) – (2.7) is a lower bound on the value
of the solution to (2.1) – (2.4). Frequently, ZD(μμμ) is a tighter lower bound on Z than that
provided by solving the linear relaxation of themodel (2.1) – (2.4). The widespread interest
in LR stems from the fact that in some cases, ZD(μμμ) = Z, i.e., the optimal solution to (2.5) –
(2.7) is actually the optimal solution to (2.1) – (2.4).

Studying (2.5) – (2.7) raises the obvious question: What are the best possible values for
the entries of μμμ, i.e., those that provide the tightest possible bound on Z (for which either
ZD(μμμ) = Z or, at least, ZD(μμμ) is quite close below Z)? This question can be answered by
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solving the following problem, termed the Lagrangian dual:

ZD = max
μμμ⩾000

ZD(μμμ)

= max
μμμ⩾000

min
p

cTxpcTxpcTxp + μTμTμT(bbb−AxpAxpAxp), (2.8)

= max
μμμ⩾000

μTbμTbμTb+min
p

(cTcTcT − μTAμTAμTA)xpxpxp, (2.9)

where {xpxpxp, p = 1, ..., P} is the set of feasible solutions to (2.5) – (2.7), assumed to be of finite
cardinality P.

Due to the integrality requirement (2.4), problems (2.1) – (2.4) and (2.8) are not,
in general, equivalent, and thus ZD(μμμ) ⩽ Z (with equality not necessarily holding).
Let μ∗μ∗μ∗ be the optimal multipliers for (2.5) – (2.7). As can be seen from (2.5), ZD(μμμ) is
the lower envelope of a finite family of linear functions, but ZD(μμμ) is not, in general,
differentiable at any μ∗μ∗μ∗. This causes major difficulties in solving (2.8), making the steepest
ascent gradient solution method invalid. Instead, the so-called subgradient optimization
method (Anstreicher and Wolsey 2009) is commonly used, where the gradients are
replaced by subgradients of the form bbb−AxpAxpAxp, p = 1, ..., P.

2.4.1. Solving the Lagrangian dual

Geoffrion (1974) showed that ZLP = ZD(μ∗μ∗μ∗) and that ZD(μ∗μ∗μ∗) ⩾ Z∗, μ∗μ∗μ∗ ⩾ 000, where μ∗μ∗μ∗
is the multiplier vector regarding the optimal solution of (2.5) – (2.7), and Z∗ and ZLP are
the values of the optimal solutions of the problem (2.1) – (2.4) and its linear relaxation,
respectively. Geoffrion also showed that a vector xxx is an optimal solution to (2.1) – (2.4) if,
given a certain set μμμ of multipliers, it satisfies the following conditions:

(i) xxx is optimal in (2.9);
(ii) AxAxAx = bbb; and
(iii) μμμ(bbb−AxAxAx) = 0.

Defining a vectorΔΔΔ = cTcTcT − μTAμTAμTA, then an optimal solution to (2.9) is obtained by fixing:

xj =


1, if Δj < 0;
0 or 1, if Δj = 0;
0, if Δj > 0.

(2.10)

One of the available methods to solve (2.9) is described in the next section.

2.4.2. Subgradient optimizationmethod

The Subgradient Optimization Method, proposed by Held and Karp (1971), begins with
a vector of multipliers μ0μ0μ0 and then, iteratively, calculates directions and steps to obtain a
sequence of vectors μkμkμk, which converges to the vector μ∗μ∗μ∗ that maximizes (2.9). Each vector
μkμkμk is closest to the optimal vector μ∗μ∗μ∗ (in terms of the norm ||μkμkμk − μ∗μ∗μ∗||) than its predecessor
μk−1μk−1μk−1, despite the fact that the objective function does not increase monotonically. The
procedure below summarizes the method in pseudocode.
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SUBGRADIENT-OPT()

1 Determine a vector μ0μ0μ0 of multipliers
2 for k = 0 to t
3 Solve (2.9) with the vector μkμkμk
4 Calculate the subgradients σkσkσk =bbb−AxpAxpAxp

5 Calculate the step tk = λk(Z∗−ZD(μkμkμk))
||σkσkσk||

6 Do μk+1μk+1μk+1 = max(000,μkμkμk + tkσk)tkσk)tkσk)
7 return μtμtμt

The natural choice for the initial vector multiplier is μ0μ0μ0 = 000. However, the convergence
can be accelerated by making μ0μ0μ0 = uuu, where uuu is a solution to the dual of the linear
relaxation problem (2.1) – (2.4). In this method there is no way to prove that the optimal
solution is reached, unless it is obtained via a vector of multipliers μkμkμk such that ZD(μkμkμk) =
Z∗. Thus, the stopping criteria, in general, is a limited number of iterations (t, line 2). The
justification for how the step tk is performed and an explanation about the factor λk can
be found in Held and Karp (1971), Held et al. (1974) and Goffin (1977). Held et al. (1974)
validated the commonly-used step size for subgradient optimization (tk, line 5), where the
denominator is the square of the norm of the subgradient vector bbb−AxpAxpAxp.

3. MSJQmodels and algorithms

3.1. The SMmodel

In this sectionwedescribe aproposedmodel for schedulingmultiway spatial joinqueries in
distributed systems, called SM (Spatial Multiway), together with solution algorithms for it.
To conformwith the related literature,weuse the termmachine as a synonymof aprocessor
in a distributed system.

We assume that multiway spatial join queries are processed in a pairwise fashion, two
datasets at a time. We also assume that each dataset has been previously partitioned, and
that the resulting data partitions have been distributed to themachines. However, no prior
knowledge of the queries is assumed (i.e., during data distribution we do not know the set
of queries that will be performed over the data).

A multiway spatial join can be thought of as a set of steps, each of them composed by a
set of jobs JJJ, n = |JJJ|, with each job defined by a pair of data partitions that are aligned by
a spatial predicate between two spatial datasets. The pair of partitions that compose a job
needs to be processed in the same physical machine, as the spatial objects that constitute
them need to be evaluated against the spatial predicate algorithm specified in the query
step. Each job must be processed on exactly one of a given numberm of nonidentical and
unrelated machines, running in parallel.

The model includes parameters that represent the datasets and their allocation in the
distributed system. The communication cost of processing a job j on a machine i, cij, is
defined as the data transfer cost that is incurred when moving a data partition from the
machine where it is currently located to the machine where it is assigned for processing.
No communication cost incurs if the data partition is processed on a machine to which it
has been previously assigned, whether it is the original data partition or a replica.

The processing cost w is defined as the processing time required to finish a job. We
assume that the processing cost of a job is the same on any machine. We also consider a
residual load u for amachine, arising fromaprior unbalancedquery execution, or any other
particularity of the system. This residual load is useful when scheduling multiway queries,
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as it accounts for the imbalance of a prior step, and hence may induce a better balance for
the entire query.

The cij and w parameters are estimated by a cost model for spatial query processing.
These metadata are gathered when datasets are loaded and spread in the underlying
distributed data system. We focus here on the problem of scheduling the multiway query
and assume that these values are previously computed. For a comprehensive set of data
structures,methods, and estimation formulas that can provide these parameters, i.e., a cost
model for multiway spatial join queries, please see de Oliveira (2017).

The objective of the scheduling is to perform job allocation in such a way that the query
load is somewhat evenly distributed among themachines, i.e., reducing themakespan, but
acknowledging that the communication cost incurred must also be controlled. However,
these are two conflicting objectives in the sense that to achieve a better balance in query
execution we may incur unacceptably high costs in transferring data partitions to idle
machines. To this end, we introduce a parameter f, to specify the desired emphasis on a
balanced schedule or on a low usage of network capacity. Table 1 summarizes the indices,
parameters, and decision variables used in the SM Model and in the algorithms presented
in the following sections.

Then we have the following problem:

Minimize ZSM = fx0 +
m∑
i=1

n∑
j=1

cijxij, (3.1)

subject to
m∑
i=1

xij = 1, j = 1, . . . , n; (3.2)

n∑
j=1

wjxij + ui ⩽ x0, i = 1, . . . ,m; (3.3)

xij ∈ {0, 1}, j = 1, . . . , n; i = 1, . . . ,m. (3.4)

Function (3.1) represents the weighted objective of minimizing the makespan and the
sum of the communication costs. Constraint family (3.2) expresses the requirement that
each job must be processed on exactly one machine. Constraint family (3.3) is a set of
logical inequalities arising from the need tominimize themakespan. Constraint family (3.4)
represents the usual integrality constraints, indicating if a job is or is not processed by a
particular machine (xij).

Clearly, computational performance is sensitive to the relative value of f. If f is set to zero,
the makespan is of no importance and the problem reduces to one of only processing
cost minimization. If f is set to a relatively high value, the total processing cost is of little
importance and the problem reduces to one of makespan minimization. Either of these
reduced problems are easier to solve than the case where we have an intermediate value
of f. Theweighting factor f can be adjusted so that for an optimal solution to any numerical
instance, the total communication cost is approximately equal to the makespan. That
is, the total communication cost and the weighted makespan are of roughly the same
importance. From now on we assume the latter, more challenging case.

Although determining a suitable value for f is nontrivial and instance-dependent, it
is possible to specify a value that establishes a compromise between makespan and
communication through a parametric analysis. Such analysis retrieves the nature of
solutions and their values as a function of f. Due to the focus on scheduling methods
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Table 1. Symbols used in the SM Model and algorithms

Symbol Description

JJJ the set of jobs
Indices
j the job in set JJJ, 1 ⩽ j ⩽ n
i the machine, 1 ⩽ i ⩽ m
Parameters (all nonnegative and finite)
n the number of jobs, |JJJ|
m the number of machines, (m ⩽ n)
wj the processing cost of j on any machine
cij the cost of communication incurred when j is processed in machine i
ui the residual load of i in a previous query or multiway step
f a factor that converts the communication cost into a processing cost, enabling the

two expressions in (3.1) to be measured in a common unit of cost.
Decision variables
x0 the makespan for the query step

xij
{
1, if job j is processed on machine i,
0, otherwise.

and space limitations, we present the parametric analysis in the supplementary material
(de Oliveira et al. 2023). Also, we direct the reader to de Oliveira (2017, Chapter 5) for a
complete explanation with examples. Although f is continuous, we have shown that it is
possible to establish bounds and breakpoints to it, i.e., there is a small set of values for f
that changes the query schedule when solving SM.

3.2. Observations on the SMmodel

The SM model represents a problem that is an extension of the machine scheduling
problem R|pmtn|Cmax, i.e., minimize the makespan with a number of unrelated machines
running in parallel. R|pmtn|Cmax isNP-complete (by reduction from 3-PARTITION). Hence
the problem related to SM is also NP-complete, so the likelihood of the existence of a
pseudo-polynomial exact algorithm for it is remote.

SM focuses on which processor a particular task is to be processed on. For instances
with many given tasks having large processing times, the memory requirements and the
solution times will be high. This makes it extremely hard to solve practical instances of the
model exactly by standard integer programming methods, such as branch-and-bound or
branch-and-cut. This has been confirmed by computational experiments with a branch-
and-cut algorithm for the problem of minimizing the makespan on parallel processors
(cf Martello et al. (1997)). An analysis of the distribution of the total computation time over
the various components of the branch-and-cut algorithm byMartello et al. (1997) revealed
thatmost of the timewas spent solving linear programs. This result reinforces the quest for
efficient approximate solution methods for SM.

3.3. Solutionmethods

3.3.1. Linear Programming Relaxation of SM

Linear relaxation of SM consists of removing the integrality constraints (3.4), thus letting xij
assume fractional values in the solution. Despite removing (3.4), the constraint family (3.2)
imposes an upper limit such that each job is still scheduled once

(∑m
i=1 xij ⩽ 1

)
.

11



Theoptimal solution for the linear relaxation canbe computedby a Linear Programming
method, such as the well-known Simplex algorithm (Bazaraa et al. 2009). The solution,
however, will be infeasible for SM if it has fractionally set jobs, i.e., jobs partially scheduled
on two or more machines. In this case, we use a repairing heuristic to fix the schedule. We
denote this procedure by LP in the following.

Both LP and themethod resulting from the Lagrangian relaxationuse the same repairing
procedure (REPAIR-PARTIAL-SOLUTION), which we introduce in Section 3.3.3.

3.3.2. Lagrangian Relaxation

Following Section 2.4, one possible Lagrangian dual for SM is obtained by dualizing
constraints (3.2) into the objective function (3.1) using the Lagrangianmultipliers μμμ = (μj |
j ∈ JJJ). The resulting dual model is:

ZD = max
μμμ⩾000

ZD(μμμ),

subject to (3.3) and (3.4), (3.5)

where

ZD(μμμ) = min
xxx

fx0 +
n∑

j=1

m∑
i=1

cijxij +
n∑

j=1

μj

( m∑
i=1

xij − 1

)

= min
xxx

fx0 +
n∑

j=1

m∑
i=1

(cij + μj)xij −
n∑

j=1

μj. (3.6)

Problem (3.5) reduces to m knapsack problems, one for each constraint in (3.3). A
knapsack problem (Kellerer et al. 2004) consists in choosing a subset of n̂ items, each with
a profit pj and weight ŵj, j = 1, . . . , n̂, such that the profit sum of the selected items
is maximized and the sum of weights does not exceed a given knapsack capacity v. The
problem can be solved in pseudo-polynomial time (Kellerer et al. 2004). A knapsack model
is given in (K.1)–(K.3) for reference. (K.1) is the objective function, (K.2) ensures that the total
weight of the selected items does not exceed v, and (K.3) defines the integrality constraints
for xj to indicate the selected items:

ZK = max
n̂∑

j=1

pjxj, (K.1)

subject to
n̂∑

j=1

ŵjxj ⩽ v, (K.2)

xj ∈ {0, 1}, j = 1, . . . , n̂. (K.3)

The m knapsack problems for LR are obtained in the following way: Let KLR(i,μμμ), i =
1, . . . ,m be the i-knapsack problem for LR. The number of items to select from is n̂ = n,
one item for each j ∈ JJJ. The weights ŵ for each problem are obtained from w values, and
profits p from c and μμμ. A lower bound for v can be determined by

∑
j∈JJJ wj/m ⩽ x0. The

complete model for a KLR(i,μμμ) is defined by (3.7) to (3.9). The inversion of the sign for
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the sum of profits in (3.7) is due to knapsack being a maximization problem, while SM is
a minimization problem.

ZKLR(i,μμμ) = max−
n∑

j=1

(
cij + μj

)
xij, (3.7)

subject to
n∑

j=1

wjxij ⩽ v− ui, (3.8)

xij ∈ {0, 1}, j = 1, . . . , n. (3.9)

Next,wepresent a procedure to computeμμμ and to obtain feasible solutions to SM, based
on the iterative Subgradient Optimization Method. Algorithm 3.1 shows the steps of the
method in pseudocode. After setting initial values in lines 1 – 3, we compute and set the
initial upper bound on ZSM (line 4), by calling a greedy algorithm that is presented next.
The value of v (line 5) is set by using a best-fit heuristic that provides an upper bound
by ordering the jobs according to decreasing order of makespan and allocating them to
the least-used machine. The lower bound for v is set in line 6. The algorithm then iterates
from k = 0 to a specific number of iterations t and while the conditions for tk and λ

Algorithm 3.1 Procedure to compute a feasible solution to SM through LR-relaxation.

SOLVE-LR-RELAXATION(ccc,www,uuu, f)
1 μ0μ0μ0 =000
2 λ = 2
3 t0 = 1
4 ZU is set with an upper bound on ZSM
5 v = best-fit UB for x0x0x0.
6 vlb =

∑
j∈J wj/m

7 k = 0
8 while (k < t) and not

(
tk < 1× 10−4 and λ < 1× 10−4)

9 for i = 1 tom
10 Solve KLR(i,μμμk) and partially set xxx

11 σj =
m∑

i = 1

xij − 1, ∀j ∈ JJJ

12 if
(
v > vlb and ZD(μkμkμk) > ZU)

13 reduce v
14 else
15 x̂̂x̂x = REPAIR-PARTIAL-SOLUTION(xxx,www, ccc,uuu, f)
16 ZU =min

(
ZU,Zx̂)

17 tk =
λ
(
ZU − ZD(μkμkμk)

)
∥σσσ∥2

18 μk+1μk+1μk+1 = μkμkμk + σσσtk
19 halve λ if a better ZD is not found in λi iterations
20 k = k+ 1
21 return best x̂̂x̂x
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are not met. In lines 9 and 10 the method iteratively solves the m knapsack problems.
Next, in line 11, the vector of subgradients σσσ is computed. If the value of ZD(μkμkμk) increases
above the upper bound limit ZU (line 12), we reduce the value of v by an arbitrary small
percentage (line 13) and return to solve the knapsack problems again. Otherwise, we call
the procedure REPAIR-PARTIAL-SOLUTION to repair the partial solution xxx, transforming it into
a feasible solution to SM (line 15). Next, based on a possibly improved upper bound ZU

(line 16), a new tk and μk+1μk+1μk+1 for the next iteration are computed (lines 17 and 18). Line 19
updates λ if a better ZD is not found in λi iterations. The method returns the best feasible
solution found (̂x̂x̂x). We refer to this procedure as the LR method.

3.3.3. Repairing Heuristic

This section introduces a heuristic to repair a partial schedule provided by either LP or
LR by transforming it into a feasible solution. The partial LP solution can have fractionally
assigned jobs,where0 < xij < 1, whichwe roundup, eventually turning them intomultiple
assigned jobs. The partial LR solution, in turn, does not have fractionally assigned jobs but
can present multiple assigned jobs, as well. Let xxx be the partial solution provided by the LP
or LR method, and let us partition the jobs into three sets defined by:

S1 =
{
j ∈ JJJ |

m∑
i=1

⌈xij⌉ = 0
}
, (3.10)

S2 =
{
j ∈ JJJ |

m∑
i=1

⌈xij⌉ = 1
}
, (3.11)

S3 =
{
j ∈ JJJ |

m∑
i=1

⌈xij⌉ > 1
}
, (3.12)

whereS1S1S1 is the set of unassigned jobs,S2S2S2 is the set of jobs that are correctly assigned, andS3S3S3
is the set of jobs thatweremultiply assigned. All j ∈ S1S1S1∪S3S3S3 need to be repaired to transform
xxx into a feasible solution.

Furthermore, let us introduce the concept of regret for a job. The regret rj for a job j
is defined as the difference between the maximum and the minimum cost that may be
incurred if the job has been scheduled in the worst or the best possible machine, plus its
load wj weighted by f. Formally, rj is defined by (3.13). We use this concept to sort the
assignment of jobs, in a way that jobs that have a large load (fwj) or a large regret are
scheduled first.

rj = fwj +
(

max
1⩽i⩽m

cij − min
1⩽i⩽m

cij
)

(3.13)

We repair xxx using the procedure REPAIR-PARTIAL-SOLUTION in Algorithm 3.2. Let x̂̂x̂x be the
feasible solution under construction. The procedure starts by setting the residual load of
previous steps u (line 4 and 5). Next it computes the number of machines for which each
j ∈ JJJ is allocated (t) and uses it to build the sets S1S1S1 and S3S3S3 (lines 7 to 11). If j is correctly set
(t = 1), x̂̂x̂x is set accordingly (line 14), and its load wj is added to the array of loads for each
machine i (line 15). The remaining jobs j ∈ S1S1S1∪S3S3S3, denoted as SuSuSu, are assigned tomachines
by theprocedure SCHEDULE-UNASSIGNED-JOBS (line 16). After this call, x̂̂x̂xhas a feasible solution
for SM. This solution is further improved by procedure IMPROVE-REPAIRED-SOLUTION (line 17).
Next, we describe these two auxiliary procedures.

Procedure SCHEDULE-UNASSIGNED-JOBS, in Algorithm 3.3, starts by sorting the jobs in SuSuSu
in decreasing order of rj (line 1). Next, for each item j ∈ SuSuSu, the procedure finds the
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Algorithm 3.2 Procedure to repair a partial solution xxx to SM.

REPAIR-PARTIAL-SOLUTION(xxx,www, ccc,uuu, f)
1 x̂̂x̂x =000
2 S1S1S1 = ∅
3 S3S3S3 = ∅
4 for i = 1 tom
5 load[i] = u[i]
6 for j ∈ JJJ
7 t =

∑m
i = 1⌈xij⌉

8 if t == 0
9 S1S1S1 =S1S1S1 ∪ {j}

10 if t > 1
11 S3S3S3 =S3S3S3 ∪ {j}
12 if t == 1
13 Let i be the machine where j is allocated
14 x̂ij = 1
15 load[i] = load[i] + wj
16 SCHEDULE-UNASSIGNED-JOBS(loadloadload,S1S1S1 ∪ S3S3S3, x̂̂x̂x,www, ccc, f)
17 IMPROVE-REPAIRED-SOLUTION(loadloadload, x̂̂x̂x,www, ccc, f)
18 return x̂

Algorithm 3.3 Procedure to schedule unassigned jobs in Su.
SCHEDULE-UNASSIGNED-JOBS(loadloadload,SuSuSu, x̂̂x̂x,www, ccc, f)
1 Sort SuSuSu by decreasing rj
2 for j ∈ SuSuSu
3 s = 1
4 lowcost =∞
5 for i = 1 tom
6 zinc = cij
7 mkspaninc =wj − (x0 − load[i])
8 if mkspaninc > 0
9 zinc = zinc+ f ∗mkspaninc

10 if zinc < lowcost
11 lowcost = zinc
12 s = i
13 x̂sj = 1
14 load[s] = load[s] + wj

machine s for which the assignment of j least increases the cost (lines 2 to 12), assigns j to it
(line 13), and updates the load on machine s (line 14) for the next iteration. The procedure
is terminated when all jobs are assigned to machines. For the sake of simplicity, we use x0
to represent the makespan. In this context, it can be obtained from the maximum value of
the loadloadload array after line 1 and updated after line 14 if load[s] exceeds the stored x0 value.

After the scheduling of the jobs in SuSuSu, we then search for jobs for which a machine
exchange is worthwhile. Let xi0 be the machine with the largest load, x1 be the second
largest load for all machines, and pj be the index of the machine where j is assigned.
Procedure IMPROVE-REPAIRED-SOLUTION, in Algorithm 3.4, searches for a new machine s, in
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Algorithm 3.4 Procedure to improve the feasible solution x̂.
IMPROVE-REPAIRED-SOLUTION(loadloadload, x̂̂x̂x,www, ccc, f)
1 for j ∈ JJJ
2 s = − 1
3 lowcost =∞
4 for i = 1 tom, i ̸= pj
5 newx0 = x0
6 if s == xi0
7 newx0 = newx0 −min(x0 − x1,wj)
8 newx0 =max(newx0, load[i] + wj)
9 zinc = f ∗ (newx0 − x0) + (cij − cpjj)

10 if zinc < lowcost
11 lowcost = zinc
12 s = i
13 if s ̸= −1
14 x̂sj = 1
15 x̂pjj = 0
16 load[s] = load[s] + wj
17 load[pj] = load[pj]− wj

which to schedule j, j ∈ JJJ, such that the sumof theprocessing and communication costs are
reducedby themost (lines 1 to 12). If there exists suchmachine s thatwould cause apositive
cost reduction (line 13), j is moved from pj to s (lines 14 and 15) and the loads for machines
s and pj are updated accordingly (lines 16 and 17). Note that the value of zinc (line 9) is
positive if moving j from pj to i does not improve the solution, and negative otherwise.

3.3.4. A Greedy Algorithm for SM

Besides being used to repair a partial solution to SM, the procedure SCHEDULE-UNASSIGNED-

JOBS (followed by IMPROVE-REPAIRED-SOLUTION) can also be used to identify a complete
schedule, starting with no scheduled jobs in x̂̂x̂x, SuSuSu = JJJ, and an empty loadloadload array.

There are three purposes in using it in this way: i) to compare the performance of the
combinatorial methods (LP and LR) with the performance of an intuitively appealing but
simple method; ii) to use it when the limit of time imposed on the query optimization
is critical, for example, for queries with small run times; and iii) to use it as a baseline for
comparison, observing that there is no other establishedmethod to compare against, and
checking that it is similar to the greedy algorithm used in related work. We refer to this
way of using these procedures as the GR method since it constitutes a greedy heuristic to
provide solutions to SM.

4. Evaluation data and results

We chose a set of public spatial datasets, obtained from the Brazilian Institute of
Geography and Statistics2 (IBGE), from the LAPIG Laboratory3 of the Institute of Social and

2https://mapas.ibge.gov.br
3Image Processing and Geoprocessing Laboratory: https://lapig.iesa.ufg.br
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Table 2. Datasets used in experiments.

Name Abrev. Type Cardinality SHP/GDB Size (MB)

Brazilian datasets (IBGE and LAPIG)
Fire alerts A Polygons 32,578 11.2
Hydrography H Lines 226,963 64.5
Roads R Lines 51,646 15.2
Counties C Polygons 5,564 38.8
Vegetation V Polygons 2,140 4.7

World-wide datasets (DCW)
Rivers RI Lines 943,638 243.2
Railways RA Lines 194,261 28.7
Hydrography - Inland HI Polygons 338,860 136.7
Elevation Contour EC Lines 703,574 572.5
Crops CR Polygons 123,746 69.3

Tiger datasets for Gigabyte-size experiments
Primary Roads PR Lines 13,373 47 (.csv 77 MB)7
Area Land Mark LM Polygons 129,252 132 (.csv 406 MB)
Area Water AW Polygons 2,292,811 821 (.csv 6.5 GB)
Linear Water LW Lines 5,825,479 2,103 (.csv 18.3 GB)
Edges ED Lines 69,572,173 14,558 (.csv 62.0 GB)

Environmental Studies (IESA) at UFG, from the Digital Chart of theWorld4 (DCW), and from
the TIGER 2015 spatial database (Bureau 2015). Table 2 shows the selected datasets and
their characteristics. All datasets have 2-dimensional objects, which represent geospatial
objects on the Earth’s surface.Wedownloaded each dataset from these sources in thewell-
known Shapefile (SHP) or FileGDB binary formats, and used the GDAL5 and GEOS6 libraries
to extract and process the geometry of each spatial object contained in them.

The first and second groups of datasets, in Table 2, were used to perform the set
of experiments involving the scheduling methods due to their manageable sizes. We
observe that what determines the execution time of the optimization is not the size of
datasets, but the number of jobs and machines, as discussed in Section 3.2. The number
of jobs, n, is determined by the number of data partitions. Larger datasets should have
larger data partitions as this improves query execution time by reducing the number of
control messages in the system, resulting in a similar number of jobs. The Gigabyte-size
experiments, in Section 4.3, combine the third group of datasets to formmultiway queries
and measure their run time.

To evaluate our proposed methods, we employed the datasets listed in Table 2 to build
a set of pairwise and multiway spatial join queries. Each pairwise spatial join provides one
scheduling instance, i.e., a set of jobs JJJ with their corresponding costs (wj and cij). Each
multiway spatial join provides the same number of scheduling instances as its number of
steps. Additionally, in multiway instances, the imbalance from a prior step is represented
by the parameter uuu.

Table 3 displays the pairwise join queries used in the experiments. There are 20 queries,
constructed using the datasets listed in Table 2 and providing an all-to-all combination
of the first group of datasets and also an all-to-all combination of the second group of
datasets. This set comprises queries that illustrate all possible combinations of the two

4http://gis-lab.info/qa/vmap0-eng.html
5Geospatial Data Abstraction Library: www.gdal.org
6Geometry Engine: https://libgeos.org
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Table 3. Pairwise Spatial Join queries used in experiments.

Name Query Jobs Name Query Jobs

J1 A ▷◁ H 8,082 J11 RI ▷◁ RA 5,572
J2 A ▷◁ R 8,082 J12 RI ▷◁ HI 10,298
J3 A ▷◁ C 8,082 J13 RI ▷◁ EC 10,019
J4 A ▷◁ V 8,082 J14 RI ▷◁ CR 6,630
J5 H ▷◁ R 7,125 J15 RA ▷◁ HI 4,614
J6 H ▷◁ C 7,587 J16 RA ▷◁ EC 4,588
J7 H ▷◁ V 7,755 J17 RA ▷◁ CR 4,209
J8 R ▷◁ C 2,139 J18 HI ▷◁ EC 8,495
J9 R ▷◁ V 2,160 J19 HI ▷◁ CR 5,624
J10 C ▷◁ V 114 J20 EC ▷◁ CR 5,106

Table 4. Multiway instances with intermediate results and the number of jobs n of each step.

Jobs n in each step

Query Mi.1 Mi.2 Mi.3

M1 ((A ▷◁ RI) ▷◁ RA) ▷◁ CR 148 69 69
M2 (RI ▷◁ RA) ▷◁ EC 5,572 5,477 -
M3 (RI ▷◁ HI) ▷◁ RA 10,298 5,544 -
M4 ((R ▷◁ RI) ▷◁ RA) ▷◁ EC 581 263 229
M5 ((A ▷◁ HI) ▷◁ CR) ▷◁ C 112 112 112
M6 ((RI ▷◁ EC) ▷◁ HI) ▷◁ RA 10,019 9,870 5,450

types of spatial objects, i.e., line ▷◁ line, line ▷◁ polygon, and polygon ▷◁ polygon, as well
as distinct cardinality results. The join predicate used is intersect. In what follows, we refer
to these queries using their numbers, ranging from J1 to J20.

Table 4 displays the set of multiway spatial join queries for the scheduling experiments.
We refer to the steps of a multiway query as Mi.j, where i is the query number and j is the
step. For example,M1 has three steps referred to asM1.1,M1.2, andM1.3. Tables 3 and 4 also
present the number of jobs n for each query (or query step). The resulting 36 experiment
instances, i.e., 20 spatial join queries and 16 steps of multiway spatial join queries, were
scheduled on m = (4, 8, 16, 32, 64) machines, that is, 180 schedules were tested for each
method.

Prior to query execution, we distributed the data partitions to themachines, individually
for each dataset, using a round-robin algorithm. In the resulting data distribution, often a
data partition from two distinct datasets with overlapping geographic region happened
to be assigned to distinct machines. Our purpose on using this distribution is to force the
scheduling algorithm to find a way to reduce the communication cost by strategically
assigning the jobs to machines. We determined the parameter f for each query step
following the methods in the supplementary material (de Oliveira et al. 2023), such that
the total communication cost is approximately equal to the makespan, i.e., the total
communication cost and the weighted makespan are of roughly the same importance.

The necessary parameters were set as λi = 50 and t = 3000, when executing the
procedure SOLVE-LR-RELAXATION (Algorithm 3.1). The maximum number of iterations t was
reached for 11 experiment instances. For the others, the number of iterations remained
between 140 and 2700. The initial ZU was provided by the GR method.

7It is common to find these datasets converted to .csv format in related work that uses the Hadoop or Spark frameworks.
Here, we depict both the original binary size and the .csv size reported in related work for a complete understanding of the
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All algorithms were coded in the C language and compiled using Clang8, with
optimization flags -Ofast -march=native. Pisinger’s minknap algorithm9 (Pisinger 1997)
was used to solve the m knapsack problems inside the LR algorithm. To find the extreme
point solution for the LP method, we used an academic license of IBM ILOG CPLEX
Optimization Studio10, version 12.6.1. The model and its parameters are set in the CPLEX
optimization module through C API calls, and the extreme point solution is captured after
the optimization process terminates.

The experiments for Section 4.1 were performed in m4.4xlarge Amazon EC2 virtual
machines, with Intel(R) Xeon(R) CPUs, E5-2686 v4 model, running at 2.30GHz with 64GB
of RAM. The operating system used was the standard Debian 11 offered by the provider
through an AMI image. Experiments that display execution time, in Section 4.2, were
performed in a controlled local environment, using an AMD Phenomtm II X6 1055T 2.8
GHz processor with 8G of RAM, a Debian 8.7 distribution and Linux Kernel version 3.18.1.
The environment for the distributed Gigabyte-size query experiments will be described in
Section 4.3.

4.1. Quality of generated schedules

In this section, we compare each schedule provided by the GR, LP and LR methods and
show how close they are to a known lower bound (Zlb

SM) for the optimal value Z∗
SM, i.e., how

good theyarewith respect to an ideal schedule for each instanceof SM. TocalculateZlb
SM, we

processed SM via the CPLEX software and left its MIP (Mixed Integer Programming) solver
to run from the root node, applying all possible cuts. We present the distance between the
proposed schedule and the lower bound, computed as gap = (Z+

SM−Zlb
SM)/Zlb

SM, where the
+ sign indicates the method used in each case, e.g., ZGR

SM.
Figure 1 presents the results. There are five charts, one for each cluster size (i.e., number

of machines, m). The gap scale is logarithmic, focusing on near-optimal schedules. There
are three marks for each query, indicating the gap for GR, LP, and LR. A mark touching
the x axis indicates a gap ⩽ 0.01%, i.e., a schedule that is very close (and sometimes
equal) to the optimum. The gaps for GR are the largest, almost all fitting in the range
10%−100%.Although there exists an instance forwhichGRprovidedagood schedule (M5.2
form = 64), the average for all gaps is 25.07%,with a high standard deviation (σ = 31.71%).
LP improved over the GR schedule in almost all instances. Example instances for which it
performed worse than GR are M1.1−1.3 for m = 16, and M4.1−4.3 for m = 64. The main
implication for LP is that the schedules were worse than GRwhen the number of machines
m increased, going from 1.10% for m = 4 to 10.88% for m = 64. This occurs because the
number of jobs that were fractionally set, i.e., jobs that were partially scheduled in more
than one machine, increased with the number of machines. We present some statistical
values in Table 5 where it is possible to check this behavior. The average of all gaps for LP
is 6.38% (σ = 10.74%).

LR achieved the smallest gaps. Observing Figure 1, for m = 4, there are 21 out of 36
instances with gap ⩽ 0.01%, with the other 15 instances having gap ⩽ 1% (check the
dotted line at gap = 1). The gaps increased when m increased, but not significantly (see
LR line on Table 5). For m = 8, 34 instances still presented gaps ⩽ 1% and two had a gap
> 1% (⩽ 1.8). For m = 64, 31 instances achieved a gap ⩽ 1% and the other five instances

experiment volume. As can be seen, the binary size is smaller, but when loaded, these datasets occupy more work memory.
The inverse can be the case for the .csv format, depending on the implementation details of each system.
8http://clang.llvm.org
9http://www.diku.dk/~pisinger/codes.html

10https://www.ibm.com/products/ilog-cplex-optimization-studio
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Figure 1. Gap between each schedule provided by GR, LP, and LR and a known lower bound of Z∗SM , for m ∈
{4, 8, 16, 32, 64}. The y axis is logarithmic to emphasize the near-optimal schedules.

were such that 1 ⩽ gap ⩽ 4.5%. Of all the 180 runs, there are only 10 cases for which LR
generated worse schedules than LP (J{3,7} form = 4, J{3,7,9} form = 8, J{3,6,7,9} form = 16,
and J7 for m = 32). LR achieved the best gap in all instances when m = 64 and also, the
best gap for all M instances. The average for all gaps was 0.43% (σ = 0.94%) with a worst
case of 4.5%.

4.2. Comparison of the execution time to produce a schedule

This section presents the execution time for GR, LP, and LR, and reports the computational
experience in solving the practical numerical instances previously mentioned. In the
experiments involving the LR method, the CPLEX parallel execution option was disabled,
i.e., the solver was limited to use only one OS thread. The other two methods, GR and
LR, were implemented sequentially and thus, all methods used only one thread. The time
reported iswall clock time, obtainedusing the functionclock_gettimewith the argument
CLOCK_REALTIME. Furthermore, we measured only the time taken in the optimization
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Table 5. Average and standard deviation for gaps in Figure 1.

Average form Standard deviation form
Method 4 8 16 32 64 4 8 16 32 64

GR 12.0 26.8 37.3 27.1 22.2 5.9 26.1 51.0 29.6 22.4
LP 1.1 3.0 7.2 9.8 10.9 1.7 4.7 12.4 12.6 13.0
LR 0.1 0.2 0.6 0.8 0.5 0.2 0.4 0.9 1.6 0.8
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Figure 2. Execution time for GR, LP, and LR. (a) shows theminimum execution time, (b) the average, and (c) the maximum
execution time for all J andM queries.

function, discarding initial dataset loading, job enumeration, and other cleanup routines,
such as memory release.

As expected, we find that solving theMIP numerical instances to optimality using CPLEX
was very time-consuming compared to the execution times reported in the following.
Moreover, the optimal solution did not show a significant benefit over LR as previously
reported – the gaps are less than 1% in all instances. For reference, the larger instances,
with respect to n andm, took from hours to days to achieve a gap less than 10−4 from Z∗

SM.
Thus, we decided not to include these timings in the charts.

Figure 2 presents the results. The y axis shows the execution time in seconds using a
logarithmic scale. As the behavior is very specific for each instance, we present in (a), (b),
and (c), the minimum, the average, and the maximum execution time, respectively. As
expected, GR is the fastest, followed by LP and lastly by LR. GR has an average time per
instance of 0.002s for m = 4, and 0.007s for m = 64. LP has an average time of 0.052s for
m = 4, and 2.7s for m = 64. LR, in turn, has an average of 1.1s for m = 4, and 14.4s for
m = 64. Themaximum execution time form = 64 for GR, LP, and LR are 0.017s, 14.9s, 43.1s,
respectively. The small dot for each bar in (b) indicates the standard deviation and it shows
that the LP execution time is less stable than for GR and LR (note the dot above the average
for LP whenm ⩾ 8, considering the logarithmic scale).

An important question is what determines the execution time of GR, LP, and LR. From
a theoretical perspective, we can examine the complexity of the algorithms proposed.
In general, they depend upon n and m. GR complexity is Θ(nm) for sufficiently large m,
or Θ(n lg n) otherwise. LP complexity is also determined by n and m, as the underlying
algorithm used to optimize the relaxed model (Simplex) is polynomial in the number
of constraints and variables (Hall 2010). Note that n and m determine the number of
variables and constraints in the SM model. In turn, LR employs a pseudo-polynomial 0-1
knapsack algorithmwhose complexity isO(vn) and it is executedm times in each iteration
for a constant number of iterations. Its amortized complexity is O(vmn). The instance
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parameters wj are used to compute the capacity v of the knapsacks. From a practical
perspective, the number of jobs ranged from 69 ⩽ n ⩽ 10, 298 in this experiment. Indeed,
queries with smaller n had lower optimization time and were prevalent to determine the
minimums in Figure 2(a). Analogously, queries with larger n establish the maximums in
Figure 2(c). The impact ofm is also perceptible for all methods as the bars increase in size
with increasing m. Finally, for a multiway query, the number of steps also determines the
execution time as we have as many schedules to optimize as the number of steps.

Observing the execution times reported for this experiment and taking into consider-
ation the quality of schedules from the previous section, we now discuss how to choose
the optimization method for a query. In general, the time required to optimize a query is
supposed to be smaller than the time required to execute it with a bad but fast-generated
schedule. Observing this, the actual optimizationmethod to be usedmay be chosen based
on the expected execution time of the query, which can be estimated based on its esti-
mated processing costs. For small ad-hoc queries, i.e., queries expected to have shorter ex-
ecution time and meant to be executed just once, the best option is usually GR. For larger
queries, however, the execution time can accommodate longer optimizations, and even
benefit from the improved schedules provided by LR.

If we focus on system throughput, though, LR appears to be the most promising
method, as it is the one that reduces the most the makespan of queries, as well as their
communication cost. Additionally, a strategy to amortize its footprint may be worthwhile.
One option is to cache and reuse the execution plan after the query optimization process, a
common strategy used for repetitive or stored queries in non-spatial DBMSs (Graefe 1993).
Other options to reduce the optimization time exists, as we can efficiently parallelize LR
by splitting the execution of them knapsack instances in each iteration. The same applies
only partially to LP. Although there exist parallel versions of the Simplex Algorithm, their
effectiveness is not always guaranteed as it depends upon the problem structure (Hall
2010).

4.3. Execution time comparisonwith gigabyte-size datasets, MapReduce, and Spark

To investigate the effectiveness of the schedules provided by our proposed methods,
called DGEO for short, we compared the execution time, shuffled data, and peak execution
memory for three Gigabyte-size multiway spatial join queries executed using DGEO and
Apache Sedona (Yu et al. 2018), formerly termed GeoSpark. Apache Sedona is an open-
source project currently incubated at Apache Foundation and is a representative work on
topof Spark. Although it is not able to executepartitionedMSJQ,wepipelined the results of
pairwise joins andmeasured the resources spentwith intermediate steps.We also consider
the execution time reported by Du et al. (2017) for MSJS and Hadoop εCR (Gupta and
Chawda 2014). MSJS fully implements MSJQ without collecting and redistributing results
for intermediate join steps. However, as it is closed-source software, we can not reproduce
their experiments in our environment. Sphinx (Eldawy etal. 2017) presented results only for
pairwise spatial joins using two synthetic datasetswith rectangles (not real spatial objects),
and thus, it is not directly comparable to our realistic scenarios. Tsitsigkos et al. (2019)
also simplified data to rectangles, and is not considered. Finally, due to the differences in
methodology, such as the multiway queries used, we only include the results presented
by Nidzwetzki and Güting (2017) (Distributed Secondo) in perspective at the end.

To make this comparison possible, we implemented a small distributed query engine
for query plan selection and execution, which can execute chain multiway spatial join
queries following the selected plan and the respective schedule provided by the optimizer.
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Table 6. Gigabyte-size Multiway Spatial Join queries used in experiments.

Name Query Binary Size (GB) .csv Size (GB)

M7 PR ▷◁ LM ▷◁ AW 1.0 7.0
M8 PR ▷◁ AW ▷◁ ED 15.4 68.6
M9 AW ▷◁ LW ▷◁ ED 17.5 86.8

We used two programming languages: C and Go11. The C language was used to code
low-level algorithms that interface with the GDAL library, used to load the dataset files in
the ESRI Shapefile (.shp) and ESRI FileGDB (.gdb). The code also interfaces with the GEOS
library to process spatial predicates. Interoperability between C and Go codewas achieved
using the native CGO extension. The Go language was used in the distributed part of the
system to implement the communication protocols and the parallel join processing. We
used queues of jobs that were implemented using themechanismof channels provided by
the language. The communication protocols used to provide the interaction between the
modules runs over TCP sockets, and the serialization of data structures was implemented
using theGOBpackageprovidedbyGo. Furtherdetail about thequeryengine canbe found
in de Oliveira (2017).

The three multiway queries used the third group of datasets presented in Table 2, from
the TIGER 2015 spatial database. The queries and their sizes are detailed in Table 6, both
in binary size (SHP or GDB format) and the .csv size reported in related work. All queries
process more than 2 million records. The last query, M9, processes more than 77 million
records and returns a set of more than 17.7 million results.

Our environment was composed of four m4.2xlarge Amazon EC2 instances, each with
four CPU cores of an Intel(R) Xeon(R) CPU, E5-2686 v4, running at 2.30GHz, two threads per
core totaling eight vCPUs, and 32GB of RAM. According to the Amazon specification, each
vCPU is a Hyper-thread of an Intel Xeon core.12 The machines were allocated in the same
data center, interconnected by a virtual network with a capacity of 10 Gbps for single-flow
and 20Gbps formulti-flow traffic in each direction (full duplex). The operating systemused
was a Debian 11 offered by the provider through an AMI image.

The execution environment used by Du et al. (2017) was composed of four Power Edge
R720 Servers, each with an Intel Xeon E5-2630 v2 2.60 GHz processor with 32 GB of
RAM, and runs a SUSE Linux enterprise server 11 SP2 operating system. According to the
Intel documentation, the Xeon E5-2630 has six cores and 12 hyper-threads. The network
capacity was not mentioned in their experiment. Version 2.6.0 of Apache Hadoop13 and
version 2.0.1 of Spark were used, both running on JDK 1.7. Thus, by comparing the
specifications, the hardware used by Du et al. (2017) has the same memory size but has
more processing power: i) we used a virtualized environment that incurs the Hypervisor
overhead, ii) our environment CPU clock was smaller (2.3 × 2.6 GHz), and iii) the number
of hyperthreads per server is smaller (8 × 12). As a rough estimate, their cluster has
approximately 63% more computing power without considering Hypervisor overhead.

The chart in Figure 3(a) presents the execution time of each query for each system.
M7 was executed in 6 seconds by DGEO, 22 seconds by Sedona (3.7x) and 84 seconds
by MSJS (14x). Similarly, M8 was executed in 1 minute and 32 seconds by DGEO, 67
minutes by Sedona (44.7x), and 22 minutes by MSJS (14.5x). DGEO executed M9 in 17.3
minutes, comparedwith 90minutes by Sedona (5x) and 28minutes byMSJS (1.6x). The gap

11http://golang.org
12https://aws.amazon.com/ec2/instance-types.
13https://hadoop.apache.org/
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Figure 3. Comparison of the execution time (a), shuffled join data (b), and peak execution memory (c) forM7 ,M8 , andM9 .
In (a), the gray bars indicate the results reported for a similar but distinct cluster, with the same amount of memory but
not virtualized and with approximately 63% more processing power (see the textual description in this section and Du et al.
(2017)). We put it into perspective here as it was specifically targeted to MSJQ.

between the systems lessened for the largest query,M9, but the difference in the amount
of time remains significant: DGEO finished the execution 11minutes earlier thanMSJS. The
unbalanced execution at the middle-end of query execution partially explains the higher
execution time of Sedona: in M8, the number of tasks (used CPU cores) starts decreasing
at 40 minutes of query execution (12 of 32 possible tasks), and steadily decreases during
the remaining 27 minutes; in M9, the situation was even worse: only 10 of 32 tasks were
running at 45 minutes – at the middle of query execution. The presence of straggler tasks
occurred even when we controlled the number of partitions in the experiment (from 100
to 3000). In contrast, DGEO required only 17 seconds of unbalanced execution forM8 and
approximately 3 min for M9. We attribute this behaviour to the LR scheduling algorithm,
and the small unbalancing at the end occurs due to imprecision in query cost estimates.
Additionally, Sedona spent some time collecting and redistributing the intermediate step:
19 seconds for M8 and 5 minutes for M9 and also shuffled more data during query
execution, as described later. Finally, compared to the others, the performance of Hadoop
εCR can be explained by the use of data persistence in the disk, a design choice of the
underlying MapReduce framework.

Compared to DGEO, Sedona shuffled more data when running the two largest queries,
as depicted in Figure 3(b). The numbers account only for the shuffled data in the join
query execution – we did not account for the data loading as the data format used in
each systemdiffers (gdb/shp vs .csv). Sedona has transferred approximately 2.6 timesmore
data through the network forM8 andM9. The shuffled data in the additional intermediate
step partially justifies the difference for Sedona: 1.7 GiB for M8 and 6 GiB for M9. As we
controlled the query optimization tomaintain an equilibriumbetween execution time and
communication cost in DGEO, through the f parameter, we attribute a significant part of
the difference to the query optimization. The optimization also justifies the larger data
shuffling inM7: the scheduler identified away to significantly reduce query execution time
at the expense of a small increase in communication. Finally, there are also differences in
the underlying technologies used to communicate between nodes: RPC (Netty) and Java
Serialization for Sedona and GOB, a heavily optimized binary protocol of the Go Language,
used by DGEO. Du et al. (2017) have not conducted this experiment.

Last but not least, Figure 3(c) presents the peak execution memory for DGEO and
Sedona. The numbers in the chart show the memory used for join query processing,
not accounting for supporting structures and other processes in the system. In M7, peak
memory by DGEO is 4.5 GiB larger than by Sedona due to a larger degree of parallelism
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during the execution in DGEO (100% CPU utilization for 6 seconds). In M8, the inverse
occurs: DGEO peak is 29.6 GiB smaller than the Sedona peak. In M9, a particular situation
occurred: both systems used almost all available memory in the cluster (128 GiB), but
Sedona occupied a larger amount with supporting structures and processes (observe that
the maximum is also reached at M8). Observing that we reserved 2 GiB of memory to
operating system processes per node, DGEO was able to use more memory in the query
execution due to its lightweight and experimental query engine, and as such, having fewer
features and structures.

Although the same queries were not executed in Distributed Secondo (Nidzwetzki
and Güting 2017), we nevertheless put in perspective the results given by the authors.
Nidzwetzki and Güting (2017) compared the performance of their system with those of
SpatialSpark (You et al. 2015) and SpatialHadoop (Eldawy and Mokbel 2015). The times
reported for a pairwise spatial join involving two datasets fromGermany, called Roads and
Buildings (size notmentioned in their study), generated fromOpen StreetMaps14, are 9, 21,
and 23 minutes, for SpatialSpark, Distributed Secondo, and SpatialHadoop, respectively.
Considering this comparison and, due to the fact that Distributed Secondo also stores
intermediate results on disk, its performance seems similar to that of MapReduce-based
systems.

In summary, the reasons for the better performance achieved by DGEO stems from the
focus on query planning, i.e., the proposed query schedulingmethod (LR).We observe that
the execution time is an order of magnitude lower for two of the queries studied (M7 and
M8). The execution time of DGEO is also significantly lower for M9, a Gigabyte-size query
with millions of results. Indeed, for all queries studied, the difference was sufficiently large
to accommodate even the most time-consuming schedules generated by LR.

About query scheduling, we demonstrated in Section 4.1 the difference in makespan
and communication costs between a naïve greedy algorithm and more efficient methods
based on the theory of combinatorial optimization. The systems compared here use a
load balancing mechanism rather than a query scheduling based on metadata. The load
balancing is implemented by the underlying framework that is independent of spatial data
and is based on the assignment of tasks to idle machines during query execution. This is a
kind of greedy strategy, similar to the baselineGRmethod, that often results in sub-optimal
cluster resource usage.

5. Conclusions

In this article, we dealt with the problem of assigning jobs to machines in a locally
distributed system. We considered a given set of jobs that are defined by data partitions
of two datasets that are aligned by a spatial predicate when processing a multiway
spatial join query. We introduced a multi-objective linear integer model for the problem
that embraces the minimization of both the makespan and the communication cost as
objectives. We discussed the difficulty of solving the problem by exact integer methods
and introduced approximate algorithmsbasedon combinatorialmethods: thewell-known
linear relaxation (LP) technique and the more sophisticated Lagrangian relaxation (LR), as
well as a baseline greedy algorithm (GR), similar to those used in related work.

Our computational experiments showed that LR usually provided better solutions than
either LP or GR. Although LR often requires significant time to identify a solution, it is
interesting to observe how close its solutions often are to the optimum and to note

14http://www.openstreetmap.org
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the reduction in makespan and communication costs that is achieved. LP and GR are
recommended for instances where small, ad-hoc queries are predominant.

We used the best schedules identified by our methods to run Gigabyte-size multiway
spatial join queries, reported in the literature, in a realistic experiment that uses practical
spatial objects (not simplifications like rectangles). We showed that the scheduling of a
query before its execution can reduce the processing time in a distributed environment by
an order of magnitude, while also shuffling significantly less data through network when
compared to state-of-the-art frameworks for spatial data processing that do not have this
capability.

Although our models focus on multiway spatial join queries, they also apply to other
kinds of problems in distributed data processing systems, notably those that require both
the alignment of data partitions and the assignment of jobs tomachines. As demonstrated
in our experiments, even a pairwise spatial join can have a more balanced execution and
reduced query cost by using themethods we propose to schedule the query fragments to
machines. In this usage, a single instance of SM for the only existing pair of datasets will
suffice, with the residual load of previous steps zeroed (uuu = 0). Another application is the
scheduling of MapReduce jobs. Each task has a set of key-value pairs generated by a map
function, and eachmachine may report the same key, producing key slices. Slices with the
same key are aligned and processed by only one reduce function (alignment of partitions),
which computes the desired result by applying the predicate algorithm (reduce function).
Therefore, we believe that the generalization of our models and algorithms in this regard
is a promising area for future work.

In our work, the number of jobs for a specific query is determined by the number of
data partitions and the intersection of the extent area of the datasets. The number of jobs,
in turn, is amajor factor in the complexity of the studiedmethods. Although it is possible to
reduce the number of partitions to in turn reduce the optimization time by concatenating
histogram cells, this may reduce estimation accuracy and create more skewed partitions,
often resulting in unbalanced query execution. Conversely, a large number of partitions
increases the opportunity for using parallelism, which is often efficient when using large
clusters to process largequeries. As today’s clusters commonly havehundreds ofmachines,
improving the methods in this respect will be pertinent in future research.
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